Skip to main content

Effect of Lubrication on Energy Requirement and Joint Properties During FSSW of AA5052-H32 Aluminium Alloy

  • Conference paper
  • First Online:
Manufacturing Engineering

Abstract

Heat produced due to friction and plastic deformation is considered to be the sources of energy for friction stir spot welding process. This paper propounds that plastic deformation plays a prominent role in heat generation and subsequent joining as compared to friction, contrary to what the name friction stir spot welding (FSSW) suggests. The effect of lubrication between the tool shoulder and the workpiece on the energy required for the welding process has been studied. It is found that due to lubrication the coefficient of friction decreased, resulting in a significantly lower torque and a decrease in plunge force. This resulted in successful welding using lower energy without reduction in joint strength as confirmed by peel and lap shear tests. Finite element (FE) simulation for the lubricated and unlubricated FSSW conditions using DEFORM-3D showed a good agreement with the experimental torque and plunge force after adjusting the friction factor. Temperature distribution from FE simulations, with and without lubricant, is compared which revealed the more important role of plastic deformation as compared to friction in governing peak temperature produced at the pin vicinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mishra, R.S., Ma, Z.Y.: Friction stir welding and processing. Mater. Sci. Eng. R Rep. 50, 1–78 (2005). https://doi.org/10.1016/j.mser.2005.07.001

    Article  Google Scholar 

  2. Thomas, W.: International Patent Application No. PCT/GB92. GB Patent Application No. 9125978 (1991)

    Google Scholar 

  3. Khan, N.Z., Siddiquee, A.N., Khan, Z.A.: Friction Stir Welding: Dissimilar Aluminium Alloys. CRC Press, London (2017)

    Book  Google Scholar 

  4. Chang, W.S., Rajesh, S.R., Chun, C.K., Kim, H.J.: Microstructure and mechanical properties of hybrid laser–friction stir welding between AA6061–T6 Al alloy and AZ31 Mg alloy. J. Mater. Sci. Technol. 27(3), 199–204 (2011)

    Article  Google Scholar 

  5. Jata, K.V., Sankaran, K.K., Ruschau, J.J.: Friction–stir welding effects on microstructure and fatigue of aluminum alloy 7050–T7451. Metall. Mater. Trans. A 31(9), 2181–2192 (2000)

    Article  Google Scholar 

  6. Liu, G., Murr, L.E., Niou, C.S., McClure, J.C., Vega, F.R.: Microstructural aspects of the friction–stir welding of 6061–T6 aluminum. Scripta Mater. 37(3), 355–361 (1997)

    Article  Google Scholar 

  7. Rhodes, C.G., Mahoney, M.W., Bingel, W.H., Spurling, R.A., Bampton, C.C.: Effects of friction stir welding on microstructure of 7075 aluminum. Scripta Mater. 36(1), 341–355 (1997)

    Article  Google Scholar 

  8. Pan, T., Joaquin, A., Wilkosz, D.E., et al.: Spot friction welding for sheet aluminum joining. In: Proceedings of the Fifth International Conference on Friction Stir Welding, pp. 14–16 (2004)

    Google Scholar 

  9. Messler, R.W. (ed.): Principles of Welding. Wiley-VCH Verlag GmbH, Weinheim, Germany (1999)

    Google Scholar 

  10. Bhardwaj, N., Narayanan, R.G., Dixit, U.S., Hashmi, M.S.J.: Recent developments in friction stir welding and resulting industrial practices. Adv. Mater. Process. Technol. 5(3), 461–496 (2019)

    Google Scholar 

  11. Colligan, K.: Material flow behavior during friction welding of aluminum. Weld. J. 75(7), 229s–237s (1999)

    Google Scholar 

  12. Reynolds, A.P.: Visualisation of material flow in autogenous friction stir welds. Sci. Technol. Weld. Joining 5(2), 120–124 (2000)

    Article  Google Scholar 

  13. Liechty, B.C., Webb, B.W.: The use of plasticine as an analog to explore material flow in friction stir welding. J. Mater. Process. Technol. 184(1–3), 240–250 (2007)

    Article  Google Scholar 

  14. Gratecap, F., Girard, M., Marya, S., Racineux, G.: Exploring material flow in friction stir welding: tool eccentricity and formation of banded structures. Int. J.Mater. Form. 5(2), 99–107 (2012)

    Article  Google Scholar 

  15. Arbegast,W.J.: Hot Deformation of Aluminum Alloys III, p. 313. TMS,Warrendale, PA, USA (2003)

    Google Scholar 

  16. Chao, Y., Qi, X.: Thermal and thermo–mechanical modeling of friction stir welding of aluminum alloy 6061–T6. J. Mater. Process. Manuf. Sci. 7, 215–233 (1998)

    Article  Google Scholar 

  17. Buffa, G., Hua, J., Shivpuri, R., Fratini, L.: Design of the friction stir welding tool using the continuum based FEM model. Mater. Sci. Eng. 419, 381–388 (2006)

    Google Scholar 

  18. Khandkar, M.Z.H., Khan, J.A., Reynolds, A.P.: Prediction of temperature distribution and thermal history during friction stir welding: input torque based model. Sci. Technol. Weld. Joining 8(3), 165–174 (2003)

    Google Scholar 

  19. Shi, Q.Y., Dickerson, T.L., Shercliff, H.R.: Thermomechanical FE modelling of friction stir welding of Al-2024 including tool loads. In: Friction Stir Welding: Proceedings of the 4th International Symposium on Friction Stir Welding. TWI Limited, UK (2003)

    Article  Google Scholar 

  20. Su, P., Gerlich, A., North, T.H., Bendzsak, G.J.: Energy utilisation and generation during friction stir spot welding. Sci. Technol. Weld. Joining 11, 163–169 (2006). https://doi.org/10.1179/174329306X84373

    Article  Google Scholar 

  21. Arora, A., Nandan, R., Reynolds, A.P., DebRoy, T.: Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments. Scripta Mater. 60, 13–16 (2009). https://doi.org/10.1016/j.scriptamat.2008.08.015

    Google Scholar 

  22. Awang, M., Mucino, V.H.: Energy generation during friction stir spot welding (FSSW) of Al 6061-T6 plates. Mater. Manuf. Process. 25, 167–174 (2010). https://doi.org/10.1080/10426910903206758

    Article  Google Scholar 

  23. Maltin, C.A., Nolton, L.J., Scott, J.L., Toumpis, A.I., Galloway, A.M.: The potential adaptation of stationary shoulder friction stirwelding technology to steel. Mater. Des. 64, 614–624 (2014). https://doi.org/10.1016/j.matdes.2014.08.017

    Article  Google Scholar 

  24. Li, D., Yang, X., Cui, L., He, F., Zhang, X.: Investigation of stationary shoulder friction stir welding of aluminum alloy 7075-T651. J. Mater. Process. Technol. 222, 391–398 (2015). https://doi.org/10.1016/j.jmatprotec.2015.03.036

    Article  Google Scholar 

  25. Jain, R., Pal, S.K., Singh, S.B.: Finite element simulation of temperature and strain distribution during friction stir welding of AA2024 aluminum alloy. J. Inst. Eng. India Ser. C 98, 37–43 (2017). https://doi.org/10.1007/s40032-016-0304-3

    Article  Google Scholar 

  26. Asadi, P., Mahdavinejad, R.A., Tutunchilar, S.: Simulation and experimental investigation of FSP of AZ91 magnesium alloy. Mater. Sci. Eng. A 528, 6469–6477 (2011). https://doi.org/10.1016/j.msea.2011.05.035

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bhardwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhardwaj, N., Ganesh Narayanan, R., Dixit, U.S. (2020). Effect of Lubrication on Energy Requirement and Joint Properties During FSSW of AA5052-H32 Aluminium Alloy. In: Sharma, V., Dixit, U., Sørby, K., Bhardwaj, A., Trehan, R. (eds) Manufacturing Engineering . Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4619-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4619-8_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4618-1

  • Online ISBN: 978-981-15-4619-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics