Skip to main content

Advances in Electrical Discharge Machining: State-of-the-Art

  • Conference paper
  • First Online:
Manufacturing Engineering

Abstract

Electrical discharge machining (EDM) is one of the widely used un-conventional machining processes. In EDM process, thermo-electric energy is utilized to remove undesired material from the parent material. The EDM is also referred as spark erosion machining. It has varied area of applications like die and amp; mold development, automotive and aerospace industries, medical implants, etc. With increase in demand of goods made by smart materials and alloys, more interest has gravitated toward the EDM process. The continuous improvement in the EDM process has drawn many researchers to carry out their study on this process. This article reviews the recent developments of EDM like powder EDM, near-dry and dry EDM, ultrasonic-assisted EDM, rotary EDM, magnetic-assisted EDM, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benedict, G.F.: Non-traditional Manufacturing Processes, pp. 207–230, Marcel Dekker Inc. New York (1987)

    Google Scholar 

  2. Luo, Y.F., Chen, C.G.: Effect of a pulsed electromagnetic field on the surface roughness in super finishing EDM. Precis. Eng 12, 97–100 (1990)

    Article  Google Scholar 

  3. Abbas, N.M., Solomon, D.G., Bahari, M.F.: A review on current research trends in electrical discharge machining (EDM). Int. J. Mach. Tools Manuf 47, 1214–1228 (2007)

    Google Scholar 

  4. Singh, A., Grover, N.K., Sharma, R.: Recent advancement In electric discharge machining. Rev. Int. J. Mod. Eng. Res. 2, 3815–3821 (2012)

    Google Scholar 

  5. Chakraborty, S., Dey, V. Ghosh, S.K.: A review on the use of dielectric fluids and their effects in electrical discharge machining characteristics. Precis. Eng. 40, 1–6 (2015)

    Google Scholar 

  6. Cheke, P.R., Khedekar, D.S., Pawar, R.S., Kadam, M.S.: Comparative performance of wet and near-dry EDM process for machining of oil hardened non-sinking steel material. Int. J. Mech. Eng Technol. 3, 13–22 (2012)

    Google Scholar 

  7. Hung, N.P., Yang, L.J., Leong, K.W.: Electrical discharge machining of cast metal matrix composites. J. Mater. Process. Tech. 44, 229–236 (1994)

    Article  Google Scholar 

  8. Norliana, M.A., Noriah, Y., Rohidatun M.W.: Electrical discharge machining (EDM): practices in Malaysian industries and possible change towards green manufacturing. J. Miner. Mater. Charact. Eng. 9(8), 709–739 (2012)

    Google Scholar 

  9. Jeswani, M.L.: Electrical discharge machining in distilled water. Wear, 72, 81–88 (1981)

    Google Scholar 

  10. Tzeng, Y.F., Lee, C.Y.: Effects of powder characteristics on electro discharge machining efficiency. Int J Adv Manufact Technol 17(8), 586–592 (2001)

    Article  Google Scholar 

  11. Kansal H.K., Singh, S., Kumar P.: Parametric optimization of powder mixed electrical discharge machining by response surface methodology. J. Mater. Process. Technol. 169(3), 427–436 (2005)

    Google Scholar 

  12. Izman, S., Hodsiyeh, D.G., Hamed, T., Rosliza, R., Rezazadeh, M.: Effects of adding multi walled carbon nanotube into dielectric when EDMing Titanium alloy. Adv. Mater. Res. 463–464, 1445–1449 (2012)

    Google Scholar 

  13. Zhao, W.S., Meng, Q.G., Wang Z.L.: The application of research on powder mixed EDM in rough machining. J. Mater. Process. Technol. 129, 30–33 (2002)

    Google Scholar 

  14. Wong, Y.S., Lim, L.C., Rahuman, I., Tee, W.M.: Near-mirror-finish phenomenon in EDM using powder-mixed dielectric. J. Mater. Process. Technol. 79, 30–40 (1998)

    Google Scholar 

  15. Sidhu, S.S., Batish, A., Kumar S.: Study of surface properties in particulate-reinforced metal matrix composites (MMCs) using powder-mixed electrical discharge machining (EDM). Mater. Manufact. Process. 29, 46–52 (2014)

    Google Scholar 

  16. NASA: Inert-Gas Electrical-Discharge Machining. NASA Technical Brief No. NPO-15660 (1985)

    Google Scholar 

  17. Kunieda, M., Furuoya, S.: Improvement of EDM Efficiency by supplying oxygen gas into gap. Anna. CIRP, 40(1), 215–218 (1991)

    Google Scholar 

  18. Kunieda, M., Yoshida, M.: Electrical discharge machining in gas. Anna. CIRP 46(1), 143–146 (1997)

    Google Scholar 

  19. Kunieda, M., Mlyoshl, Y., Tsutomu, T.: High speed 3D milling by Dry EDM. CIRP Anna. Manufact. Technol. 52(1), 147–150 (2003)

    Google Scholar 

  20. Kao, C.C., Tao, J., Lee, S., Shih, A.J.: Dry wire electrical discharge machining of thin workpiece. Trans NAMRI/SME 34, 253–260 (2006)

    Google Scholar 

  21. Liqing, L., Yingjie, S.: Study of dry EDM with oxygen-mixed and cryogenic cooling approaches. Procedia CIRP 6, 344–350 (2013)

    Article  Google Scholar 

  22. Shue K.Y., Tsai Y.Y., Chang Y.M.: An investigation of attachment on electrode surface in Dry EDM. Adv. Mater. Res. 126–128, 407–412 (2010)

    Google Scholar 

  23. Govindan, P., Joshi S.S.: Experimental characterization of material removal in dry electrical discharge drilling. Inter. J. Mach. Tools Manufact. 50(5), 431–443 (2010)

    Google Scholar 

  24. Wang, T., Zhe, J., Zhang, Y.Q., Li, Y.L., Wen, X.R.: Thermal and fluid field simulation of single pulse discharge in dry EDM. Procedia CIRP 6, 427–431 (2013)

    Article  Google Scholar 

  25. Saha, S.K., Choudhury, S.K.: Multi–objective optimization of the dry electric discharge machining process. hal-00396875, version 1–4 (2009)

    Google Scholar 

  26. Tanimura, T., Isuzugawa, K., Fujita, I., Iwamoto, A., Kamitani, T.: Development of EDM in the mist. In: Proceedings of Ninth International Symposium of Electro Machining (ISEM IX), pp. 313–316. Nagoya Japan (1989)

    Google Scholar 

  27. Dhakar, K., Dvivedi, A.: Parametric evaluation on near-dry electric discharge machining. Mater. Manufact. Process. 31(4), 413–421 (2015)

    Article  Google Scholar 

  28. Kao, C.C., Tao, J., Shih, A.J.: Near dry electrical discharge machining. Inter. J. Mach. Tools Manufact. 47(15), 2273–2281 (2007)

    Google Scholar 

  29. Tao, J., Shih, A.J., Ni, J.: Near-dry EDM milling of mirror-like surface finish. Inter J. Electr. Mach. 13, 29–33 (2008)

    Google Scholar 

  30. Tao, J., Shih, A.J., Ni, J.: Experimental study of the dry and near-dry electrical discharge milling processes. J. Manufact. Sci. Eng. 130(1), 11002–11009 (2008)

    Google Scholar 

  31. Fujiki, M., Ni, J., Shih, A.J.: Investigation of the effects of electrode orientation and fluid flow rate in near-dry EDM milling. Inter. J. Mach. Tools Manufact. 49(10), 749–758 (2009)

    Google Scholar 

  32. Tao, J.: Investigation of dry and near-dry electrical discharge milling processes. A dissertation, The University of Michigan (2008)

    Google Scholar 

  33. Dhakar, K., Dvivedi, A., Dhiman, A.: Experimental investigation on effects of dielectric mediums in near-dry electric discharge machining. J. Mech. Sci. Technol. 30(5), 2179–2185 (2016)

    Article  Google Scholar 

  34. Gholipoor, A., Baseri, H., Shabgard, M.R.: Investigation of near dry EDM compared with wet and dry EDM processes. J. Mech. Sci. Technol. 29(5), 2213–2218 (2015)

    Google Scholar 

  35. Dhakar, K., Chaudhary, K., Dvivedi, A., Bembelge, O.: An environment friendly and sustainable machining method: near-dry EDM. Mater. Manufact. Process. (2019). https://doi.org/10.1080/10426914.2019.1643471

    Article  Google Scholar 

  36. Tong, H., Li, Y., Wang. Y.: Experimental research on vibration assisted EDM of micro-structures with non-circular cross-section. J. Mater. Process. Technol. 208, 289–298 (2008)

    Google Scholar 

  37. Yan, B.H., Chen, M.D.: Effect of ultrasonic vibration on electrical discharge machining characteristics of Ti-6Al-4 V Alloy. J. Jap. Inst. Light Met. 5, 281–285 (1994)

    Google Scholar 

  38. Sundaram, M.M., Pavalarajan, G.B., Rajurkar, K.P.: A study on process parameters of ultrasonic assisted micro EDM based on Taguchi method. J. Mater. Eng. Perform. 17, 210–215 (2008)

    Google Scholar 

  39. Prihandana, G.S., Mahardika, M., Mahardika, M.: Effect of low-frequency vibration on workpiece in EDM processes. Ind. J. Eng. Mater. Sci. 19, 275–378 (2012)

    Google Scholar 

  40. Praneetpongrung, C., Fukuzawa, Y., Nagasawa, S., Yamashita, K.: Effects of the EDM combined ultrasonic vibration on the machining properties of Si3n4. Mater. Trans. 11, 2113–2120 (2010)

    Google Scholar 

  41. Koshy, P., Jain, V.K., Lal, G.K.: Experimental Investigations into electrical discharge machining with a rotating disc electrode. Precis. Eng. 1, 6–15 (1993)

    Google Scholar 

  42. Soni, J.S., Chakraverti, G.: Performance evaluation of rotary EDM by experimental design technique. Defense Sci. J. 1, 65–73 (1997)

    Google Scholar 

  43. Fujun. R., Dechen. H., Dianjun. W.: Analysis of motion laws of machining non-sphere by EDM with rotary electrode. J. Mater. Process. Technol. 149(1–3), 323–327 (2004)

    Google Scholar 

  44. Aliakbari, E., Baseri, H.: Optimization of machining parameters in rotary EDM process by using the Taguchi method. Internat. J. Adv. Manufact. Technol. 62, 9–12, 1041–1053

    Google Scholar 

  45. Shanker, K., Ghosh, A.: A study of electro-spark machining characteristics with electromagnetic spark- gap controlling mechanism. Inter. J. Mach. Tool Des. Res. 15, 209–222 (1975)

    Google Scholar 

  46. Chattopadhyay, K.D., Satsangi, P.S., Verma, S., Sharma, P.C.: Analysis of rotary electrical discharge machining characteristics in reversal magnetic field for copper-en8 steel system. Inter. J. Adv. Manufact. Technol. 38, 925–937 (2008)

    Google Scholar 

  47. Hemant, W., Vijaykumar, S.J., Singh, T.P.: Magnetic field assisted electrical discharge machining of AISI 4140. Appl. Mechan. Mater. 592–594, 479–483 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnakant Dhakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dhakar, K., Dandekar, M., Tyagi, M. (2020). Advances in Electrical Discharge Machining: State-of-the-Art. In: Sharma, V., Dixit, U., Sørby, K., Bhardwaj, A., Trehan, R. (eds) Manufacturing Engineering . Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4619-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4619-8_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4618-1

  • Online ISBN: 978-981-15-4619-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics