Skip to main content

Nonlinear Optical Dielectric Waveguides

  • Chapter
  • First Online:
Book cover Ion Irradiation of Dielectrics for Photonic Applications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 231))

  • 695 Accesses

Abstract

Nonlinear optical effects in waveguides are of potential applications in the development of various integrated photonic devices. Ion beam produced nonlinear waveguides possess well preserved properties of the bulks and could be utilized for nonlinear optical applications. In this chapter, the ion beam modification of nonlinear optical crystals and the applications of the nonlinear waveguides are introduced. In Sect. 8.1, the nonlinear properties of the waveguides, including the modified nonlinear coefficients in the guiding regions, are presented. In Sect. 8.2, one of the major applications of the nonlinear waveguides, the frequency/wavelength conversion, is overviewed. Section 8.3 reviews the research results on the photorefractive waveguides, which are based on a “weak” light induced effect. Section 8.4 is devoted to the nonlinear propagation of light (spatial solitons) in waveguides and waveguide arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.W. Boyd, Nonlinear Optics (Academic Press, 2008)

    Google Scholar 

  2. Z. Chen, R. Morandotti, Nonlinear Photonics and Novel Optical Phenomena (Springer, 2012)

    Google Scholar 

  3. P.F. Liao, P.L. Kelley, Quantum Electronics: principles and Applications (Academic Press, 1992)

    Google Scholar 

  4. J. Yao, Y. Wang, Nonlinear Optics and Solid-State Lasers (Springer, 2012)

    Google Scholar 

  5. P.D. Townsend, P. J. Chandler, L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994)

    Google Scholar 

  6. F. Chen, Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications. Laser Photonics Rev. 6, 622 (2012)

    Article  ADS  Google Scholar 

  7. N. Dong, Y. Tan, A. Benayas, J.R.V. de Aldana, D. Jaque, C. Romero, F. Chen, Q. Lu, Femtosecond laser writing of multifunctional optical waveguides in a Nd:YVO4+KTP hybrid system. Opt. Lett. 36, 975 (2011)

    Article  ADS  Google Scholar 

  8. N. Dong, F. Chen, D. Jaque, Q. Lu, Micro second harmonic and Raman spectra of He+ implanted KTiOPO4 waveguides. Opt. Express 19, 13934 (2011)

    Article  ADS  Google Scholar 

  9. N. Dong, Y. Yao, Y. Jia, F. Chen, S.K. Vanga, A.A. Bettiol, Q. Lu, Buried channel waveguides in KTiOPO4 nonlinear crystal fabricated by focused He+ beam writing. Opt. Mater. 35, 184 (2012)

    Article  ADS  Google Scholar 

  10. A.M. Radojevic, M. Levy, H. Kwak, R.M. Osgood, Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films. Appl. Phys. Lett. 75, 2888 (1999)

    Article  ADS  Google Scholar 

  11. A.M. Radojevic, M. Levy, R.M. Osgood, D.H. Jundt, A. Kumar, H. Bakhru, Second-order optical nonlinearity of 10 µm-thick periodically poled LiNbO3 films. Opt. Lett. 25, 1034 (2000)

    Article  ADS  Google Scholar 

  12. R. Kremer, A. Boudrioua, P. Moretti, J.C. Loulergue, Measurements of the non-linear d33 coefficients of light-ion implanted lithium niobate by second harmonic generation in total reflection geometry. Opt. Commun. 219, 389 (2003)

    Article  ADS  Google Scholar 

  13. J. Rams, J. Olivares, P.J. Chandler, P.D. Townsend, Second harmonic generation capabilities of ion implanted LiNbO3 waveguides. J. Appl. Phys. 84, 5180 (1998)

    Article  ADS  Google Scholar 

  14. J. Olivares, A. García -Navarro, A. Méndez, F. Agulló-López, G. García, A. Garcıa-Cabanes, M. Carrascosa, Nucl. Instrum. Meth. Phys. Res. B 257, 765 (2007)

    Google Scholar 

  15. F. Chen, Photonic guiding structures in lithium niobate crystals produced by energetic ion beams. J. Appl. Phys. 106, 081101 (2009)

    Article  ADS  Google Scholar 

  16. J. Olivares, M.L. Crespillo, O. Caballero-Calero, M.D. Ynsa, A. García-Cabañes, M. Toulemonde, C. Trautmann, F. Agulló-López, Thick optical waveguides in lithium niobate induced by swift heavy ions (~10 MeV/amu) at ultralow fluences. Opt. Express 17, 24175 (2009)

    Article  ADS  Google Scholar 

  17. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, O. Caballero, Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences. Opt. Lett. 32, 2587 (2007)

    Article  ADS  Google Scholar 

  18. J. Olivares, G. García, A. Garcıa, F. Agulló-López, O. Caballero, A. García-Cabanes, Appl. Phys. Lett. 86, 183501 (2005)

    Article  ADS  Google Scholar 

  19. L. Ai, L. Wang, Y. Tan, S. Akhmadaliev, S. Zhou, F. Chen, Efficient second harmonic generation of diced ridge waveguides based on carbon ion-irradiated periodically poled LiNbO3. J. Lightwave Technol. 35, 2476 (2017)

    Article  ADS  Google Scholar 

  20. L. Ai, L. Wang, X. Zhang, C. Chen, F. Chen, Depth profile of the nonlinear susceptibility of LiNbO3 ridge waveguides fabricated by ion implantation and dicing. Opt. Mater. Express 7, 3836 (2017)

    Article  ADS  Google Scholar 

  21. D. Fluck, P. Gunter, Second-harmonic generation in potassium niobate waveguides. IEEE J. Sel. Top. Quant. Electron. 6, 122 (2000)

    Article  ADS  Google Scholar 

  22. A. Boudrioua, J.C. Loulergue, P. Moretti, B. Jacquier, G. Aka, D. Vivien, Second-harmonic generation in He+-implanted gadolinium calcium oxoborate planar waveguides. Opt. Lett. 24, 1299 (1999)

    Article  ADS  Google Scholar 

  23. B. Vincent, A. Boudrioua, J.C. Loulergue, P. Moretti, S. Tascu, B. Jacquier, G. Aka, D. Vivien, Channel waveguides in Ca4GdO(BO3)3 fabricated by He+ implantation for blue-light generation. Opt. Lett. 28, 1025 (2003)

    Article  ADS  Google Scholar 

  24. Y. Ren, Y. Jia, F. Chen, Q. Lu, S. Akhmadaliev, S. Zhou, Second harmonic generation of swift carbon ion irradiated Nd:GdCOB waveguides. Opt. Express 19, 12490 (2011)

    Article  ADS  Google Scholar 

  25. Y. Jia, F. Chen, J.R.V. de Aldana, S. Akhmadaliev, S. Zhou, Femtosecond laser micromachining of Nd:GdCOB ridge waveguides for second harmonic generation. Opt. Mater. 34, 1913 (2012)

    Article  ADS  Google Scholar 

  26. G. Poberaj, R. Degl’Innocenti, C. Medrano, P. Günter, UV integrated optics devices based on beta-barium borate, Opt. Mater. 31, 1049 (2009)

    Google Scholar 

  27. R. Degl’Innocenti, A. Majkic, F. Sulser, L. Mutter, G. Poberaj, P. Günter, UV second harmonic generation at 266 nm in He+ implanted β-BaB2O4 optical waveguides. Opt. Express 16, 11660 (2008)

    Google Scholar 

  28. N. Hamelin, G. Lifante, P.J. Chandler, P.D. Townsend, S. Pityana, A.J. Mccaffery, Second harmonic generation in ion implanted lithium niobate planar waveguides. J. Mod. Opt. 41, 1339 (1994)

    Article  ADS  Google Scholar 

  29. C. Chen, L. Pang, Q. Lu, L. Wang, Y. Tan, Z. Wang, F. Chen, Refractive index engineering through swift heavy ion irradiation of LiNbO3 crystal towards improved light guidance. Sci. Rep. 7, 10805 (2017)

    Article  ADS  Google Scholar 

  30. O. Gaathon, A. Ofan, D. Djukic, J. Dadap, R. M. Osgood, S. Bakhru, H. Bakhru, Proceedings of the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, San Jose, 2008), paper CWG6

    Google Scholar 

  31. N. Hamelin, Y.T. Chow, Guided-type second harmonic generation in ion implanted MgO:LiNbO3. J. Mod. Opt. 45, 2125 (1998)

    ADS  Google Scholar 

  32. G.M. Davis, L. Zhang, P.J. Chandler, P.D. Townsend, Planar and channel waveguide fabrication in LiB3O5 using MeV He+ ion implantation. J. Appl. Phys. 79, 2863 (1996)

    Article  ADS  Google Scholar 

  33. Y. Ren, Y. Jia, N. Dong, L. Pang, Z. Wang, Q. Lu, F. Chen, Guided-wave second harmonics in Nd:YCOB optical waveguides for integrated green lasers. Opt. Lett. 37, 244 (2012)

    Article  ADS  Google Scholar 

  34. R. Li, W. Nie, Z. Shang, C. Cheng, S. Akhmadaliev, S. Zhou, Q. Lu, F. Chen, Guided-wave second harmonics in Nd:YCOB ridge waveguides produced by combination of carbon ion irradiation and precise diamond blade dicing. Opt. Mater. 57, 153 (2016)

    Article  ADS  Google Scholar 

  35. Y. Cheng, Y. Jia, S. Akhmadaliev, S. Zhou, F. Chen, Guided-wave phase-matched second-harmonic generation in KTiOPO4 waveguide produced by swift heavy-ion irradiation. Opt. Eng. 53, 117102 (2014)

    Article  ADS  Google Scholar 

  36. C. Chen, C.E. Ruter, M.F. Volk, C. Cheng, Z. Shang, Q. Lu, S. Akhmadaliev, S. Zhou, F. Chen, D. Kip, Second harmonic generation of diamond-blade diced KTiOPO4 ridge waveguides. Opt. Express 24, 16434 (2016)

    Article  ADS  Google Scholar 

  37. B. Vincent, A. Boudrioua, R. Kremer, P. Moretti, Second harmonic generation in helium-implanted periodically poled lithium niobate planar waveguides. Opt. Commun. 247, 461 (2005)

    Article  ADS  Google Scholar 

  38. Q. Huang, P. Liu, T. Liu, L. Zhang, Y. Zhou, X. Wang, Second harmonic generation in periodically poled LiNbO3 waveguides formed by oxygen-ion implantation. Phys. Status Solidi-R. 6, 205 (2012)

    Article  Google Scholar 

  39. Q. Ripault, M.W. Lee, F. Mériche, T. Touam, B. Courtois, E. Ntsoenzok, L. Peng, A. Fischer, A. Boudrioua, Investigation of a planar optical waveguide in 2D PPLN using Helium implantation technique. Opt. Express 21, 7202 (2013)

    Article  ADS  Google Scholar 

  40. B. Vincent, R. Kremer, A. Boudrioua, P. Moretti, Y.C. Zhang, C.C. Hsu, L.H. Peng, Green light generation in a periodically poled Zn-doped LiNbO3 planar waveguide fabricated by He+ implantation. Appl. Phys. B 89, 235 (2007)

    Article  ADS  Google Scholar 

  41. L. Wang, C.E. Haunhorst, M.F. Volk, F. Chen, D. Kip, Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO3 crystals. Opt. Express 23, 30188 (2015)

    Article  ADS  Google Scholar 

  42. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, J.E. Bowers, Thin film wavelength converters for photonic integrated circuits. Optica 3, 531 (2016)

    Article  ADS  Google Scholar 

  43. Cheng Wang, Carsten Langrock, Alireza Marandi, Marc Jankowski, Mian Zhang, Boris Desiatov, Martin M. Fejer, Marko Lončar, Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438 (2018)

    Article  ADS  Google Scholar 

  44. J. Chen, Z. Ma, Y. Sua, Z. Li, C. Tang, Y. Huang, Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica 6, 1244 (2019)

    Article  ADS  Google Scholar 

  45. J. Lu, J.B. Surya, X. Liu, A.W. Bruch, Z. Gong, Y. Xu, H.X. Tang, Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica 6, 1455 (2019)

    Article  ADS  Google Scholar 

  46. C. Wang, Z. Li, M.H. Kim, X. Xiong, X. Ren, G. Guo, N. Yu, M. Lončar, Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun. 8, 2098 (2017)

    Article  ADS  Google Scholar 

  47. P. Günter, J.P. Huignard, Photorefractive Materials and Their Applications 1: basic Effects (Springer, 2006)

    Google Scholar 

  48. D. Kip, Photorefractive waveguides in oxide crystals: fabrication, properties, and applications. Appl. Phys. B 67, 131 (1998)

    Article  ADS  Google Scholar 

  49. P. Günter, J.P. Huignard, Photorefractive Materials and Their Applications, vol. 2 (Springer 2007)

    Google Scholar 

  50. Y. Tan, F. Chen, D. Kip, Photorefractive properties of optical waveguides in Fe:LiNbO3 crystals produced by O3+ ion implantation. Appl. Phys. B 94, 467 (2009)

    Article  ADS  Google Scholar 

  51. A. Dazzi, P. Mathey, P. Lompré, P. Jullien, P. Moretti, D. Rytz, High performance of two-wave mixing in a BaTiO3 waveguide realized by He+ implantation. J. Opt. Soc. Am. B 16, 1915 (1999)

    Article  ADS  Google Scholar 

  52. P. Mathey, A. Dazzi, P. Jullien, D. Rytz, P. Moretti, Guiding properties and nonlinear wave mixing at 854 nm in a rhodium-doped BaTiO3 waveguide implanted with He+ ions. J. Opt. Soc. Am. B 18, 344 (2001)

    Article  ADS  Google Scholar 

  53. P. Mathey, A. Dazzi, P. Jullien, D. Rytz, P. Moretti, Two-wave mixing at 854 nm in BaTiO3: Rh planar waveguide implanted with He+. Opt. Mater. 18, 69 (2001)

    Article  ADS  Google Scholar 

  54. K.E. Youden, S.W. James, R.W. Eason, P.J. Chandler, L. Zhang, P.D. Townsend, Photorefractive planar waveguides in BaTiO3 fabricated by ion-beam implantation. Opt. Lett. 17, 1509 (1992)

    Article  ADS  Google Scholar 

  55. M. Zha, D. Fluck, P. Günter, M. Fleuster, C. Buchal, Two-wave mixing in photorefractive ion-implanted KNbO3 planar waveguides at visible and near-infrared wavelengths. Opt. Lett. 18, 577 (1993)

    Article  ADS  Google Scholar 

  56. S. Brülisauer, D. Fluck, P. Günter, High gain two-wave mixing in H+ implanted photorefractive Fe:KNbO3 planar waveguides. Electron. Lett. 31, 312 (1995)

    Article  Google Scholar 

  57. S. Brülisauer, D. Fluck, P. Günter, L. Beckers, C. Buchal, Photorefractive effect in proton-implanted Fe-doped KNbO3 waveguides at telecommunication wavelengths. J. Opt. Soc. Am. B 13, 2544 (1996)

    Article  ADS  Google Scholar 

  58. D. Kip, B. Kemper, I. Nee, R. Pankrath, P. Moretti, Photorefractive properties of ion-implanted waveguides in strontium barium niobate crystals. Appl. Phys. B 65, 511 (1997)

    Article  ADS  Google Scholar 

  59. B. Peng, Y. Tan, F. Chen, D. Kip, Two-wave mixing of ion-implanted photorefractive waveguides in near-stoichiometric Fe:LiNbO3 crystals. Opt. Mater. 33, 773 (2011)

    Article  ADS  Google Scholar 

  60. Y. Tan, F. Chen, X.L. Wang, L. Wang, V. Shandarov, D. Kip, Formation of reconfigurable optical channel waveguides and beam splitters on top of proton-implanted lithium niobate crystals using spatial dark soliton-like structures. J. Phys. D 41, 102001 (2008)

    Article  ADS  Google Scholar 

  61. Y. Tan, F. Chen, M. Stepic, V. Shandarov, D. Kip, Reconfigurable optical channel waveguides in lithium niobate crystals produced by combination of low-dose O3+ ion implantation and selective white light illumination. Opt. Express 16, 10465 (2008)

    Article  ADS  Google Scholar 

  62. J. Villarroel, M. Carrascosa, A. García-Cabañes, O. Caballero-Calero, M. Crespillo, J. Olivares, Photorefractive response and optical damage of LiNbO3 optical waveguides produced by swift heavy ion irradiation. Appl. Phys. B 95, 429 (2009)

    Article  ADS  Google Scholar 

  63. D. Kip, M. Wesner, C. Herden, V. Shandarov, Interaction of spatial photorefractive solitons in a planar waveguide. Appl. Phys. B 68, 971 (1999)

    Article  ADS  Google Scholar 

  64. D. Kip, M. Wesner, V. Shandarov, P. Moretti, Observation of bright spatial photorefractive solitons in a planar strontium-barium niobate waveguide. Opt. Lett. 23, 921 (1998)

    Article  ADS  Google Scholar 

  65. D. Kip, M. Wesner, E. Krätzig, V. Shandarov, P. Moretti, All-optical beam deflection and switching in strontium-barium-niobate waveguides. Appl. Phys. Lett. 72, 1960 (1998)

    Article  ADS  Google Scholar 

  66. V.G. Kruglov, V.M. Shandarov, Y. Tan, F. Chen, D. Kip, Dark photovoltaic spatial solitons in a planar waveguide obtained by proton implantation in lithium niobate. Quant. Electron. 38, 1045 (2008)

    Article  ADS  Google Scholar 

  67. D.N. Christodoulides, F. Lederer, Y. Silberberg, Discretizing light behavior in linear and nonlinear waveguide lattices. Nature 424, 817 (2003)

    Article  ADS  Google Scholar 

  68. Y. Eisenberg, Y. Silberberg, R. Morandotti, A.R. Boyd, J.S. Aitchison, Discrete spatial optical solitons in waveguide arrays, Phys. Rev. Lett. 81, 3383 (1998)

    Google Scholar 

  69. Y. Tan, F. Chen, P.P.P.P. Beličev, M. Stepić, A. Maluckov, C.E. Rüter, D. Kip, Gap solitons in defocusing lithium niobate binary waveguide arrays fabricated by proton implantation and selective light illumination. Appl. Phys. B 95, 531 (2009)

    Article  ADS  Google Scholar 

  70. P.P. Beličev, I. Ilić, M. Stepić, A. Maluckov, Y. Tan, F. Chen, Observation of linear and nonlinear strongly localized modes at phase-slip defects in one-dimensional photonic lattices. Opt. Lett. 35, 3099 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, F., Amekura, H., Jia, Y. (2020). Nonlinear Optical Dielectric Waveguides. In: Ion Irradiation of Dielectrics for Photonic Applications. Springer Series in Optical Sciences, vol 231. Springer, Singapore. https://doi.org/10.1007/978-981-15-4607-5_8

Download citation

Publish with us

Policies and ethics