Shape Elongation of Nanoparticles Induced by Swift Heavy Ion Irradiation

Part of the Springer Series in Optical Sciences book series (SSOS, volume 231)


In this chapter, the shape elongation of nanoparticles (NPs) induced by swift heavy ions (SHIs) and optical applications are described. SHIs are very high energy ions whose energy loss processes are dominated by electronic friction. To understand the elongation mechanism and the optical properties, Sect. 5.1 describes the fundamental phenomena induced by SHI irradiation, including the point defect production, ion track formation, ion-induced compaction, core/shell ion tracks, and ion hammering. In Sect. 5.2, the properties of the shape elongation are demonstrated with important concepts of the minimum width for the elongation, the mass non-conservation, the scaling law, etc. In Sect. 5.3, the elongation mechanism, while it is still in debate, is discussed comparing with the synergy model and the thermal pressure model, after introducing the concepts of the inelastic thermal spike, two-temperature molecular dynamics. Section 5.4 reviews the optical applications of the shape elongation, including the linear dichroism, the birefringence, possible application to nanometer-thick polarizer, the second-harmonic generation microscopy, etc. In Sect. 5.5, some comments are presented about the ion tracks, which are important to understand the irradiation effects with SHIs. Finally, the elongation by MeV C60 cluster ions is described in Sect. 5.6, which is as efficient as 200 MeV Xe ions, but two orders of the magnitude lower energy.


Swift heavy ions Shape elongation of nanoparticles Ion track Compaction Ion hammering Minimum width for elongation Mass non-conservation Scaling rule for elongation Dichroism Birefringence Self-trapped exciton 


  1. 1.
    L. Skuja, Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J. Non-Cryst. Solids 239, 16 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    R.A.B. Devine, Ion implantation-induced and radiation-induced structural modifications in amorphous SiO2. J. Non-Cryst. Solids 152, 50 (1993)CrossRefGoogle Scholar
  3. 3.
    D.L. Griscom, Optical properties and structure of defects in silica glass. J. Ceram. Soc. Jpn. 99, 923 (1991)CrossRefGoogle Scholar
  4. 4.
    R.A.B. Devine, Macroscopic effects of radiation in amorphous SiO2. Nucl. Instrum. Meth. Phys. Res. B 91, 378 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    H. Amekura, N. Okubo, F. Ren, N. Ishikawa, Swift heavy ion irradiation to ZnO nanoparticles: steep degradation at low fluences and stable tolerance at high fluences. J. Appl. Phys. 124, 145901 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    H. Amekura, N. Kishimoto, Effects of high-fluence ion implantation on colorless diamond self-standing films. J. Appl. Phys. 104, 063509 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    A. Oliver, J.C. Cheang-Wong, A. Crespo, L. Rodríguez-Fernández, J.M. Hernández, E. Muñoz, R. Espejel-Morales, E’ and B2 center production in amorphous quartz by MeV Si and Au ion implantation. Mater. Sci. Eng. B 78, 32 (2000)Google Scholar
  8. 8.
    I. Jozwik-Biala, J. Jagielski, B. Arey, L. Kovarik, G. Sattonnay, A. Debelle, S. Mylonas, I. Monnet, L. Thomé, Effect of combined local variations in elastic and inelastic energy losses on the morphology of tracks in ion-irradiated materials. Acta Mater. 61, 4669 (2013)CrossRefGoogle Scholar
  9. 9.
    D. Schauries, B. Afra, T. Bierschenk, M. Lang, M.D. Rodriguez, C. Trautmann, W. Li, R.C. Ewing, P. Kluth, The shape of ion tracks in natural apatite. Nucl. Instrum. Meth. Phys. Res. B 326, 117 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    A. Meftah, F. Brisard, J.M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J.P. Stoquert, F. Studer, M. Toulemonde, Track formation in SiO2 quartz and the thermal-spike mechanism. Phys. Rev. B 49, 12457 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    B. Afra, M.D. Rodriguez, C. Trautmann, O.H. Pakarinen, F. Djurabekova, K. Nordlund, T. Bierschenk, R. Giulian, M.C. Ridgway, G. Rizza, N. Kirby, M. Toulemonde, P. Kluth, SAXS investigations of the morphology of swift heavy ion tracks in α-quartz. J. Phys.: Conden. Mat. 25, 045006 (2013)Google Scholar
  12. 12.
    N. Itoh, D.M. Duffy, S. Khakshouri, A.M. Stoneham, Making tracks: electronic excitation roles in forming swift heavy ion tracks. J. Phys.: Conden. Mat. 21, 474205 (2009)Google Scholar
  13. 13.
    M. Lang, J. Lian, J. Zhang, F. Zhang, W.J. Weber, C. Trautmann, R.C. Ewing, Single-ion tracks in Gd2Zr2−xTxO7 pyrochlores irradiated with swift heavy ions. Phys. Rev. B 79, 224105 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    P.D. Townsend, P.J. Chandler, L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994)Google Scholar
  15. 15.
    K. Awazu, S. Ishii, K. Shima, S. Roorda, J.L. Brebner, Structure of latent tracks created by swift heavy-ion bombardment of amorphous SiO2. Phys. Rev. B 62, 3689 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    H. Amekura, N. Ishikawa, N. Okubo, M.C. Ridgway, R. Giulian, K. Mitsuishi, Y. Nakayama, Ch. Buchal, S. Mantl, N. Kishimoto, Zn nanoparticles irradiated with swift heavy ions at low fluences: optically-detected shape elongation induced by nonoverlapping ion tracks. Phys. Rev. B 83, 205401 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    S. Klaumunzer, Ion tracks in quartz and vitreous silica. Nucl. Instrum. Methods Phys. Res. B 225, 136 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    K. Nomura, T. Nakanishi, Y. Nagasawa, Y. Ohki, K. Awazu, M. Fujimaki, N. Kobayashi, S. Ishii, K. Shima, Structural change induced in TiO2 by swift heavy ions and its application to three-dimensional lithography. Phys. Rev. B 68, 064106 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    A. Benyagoub, S. Klaumunzer, M. Toulemonde, Radiation-induced compaction and plastic flow of vitreous silica. Nucl. Instrum. Meth. Phys. Res. B 146, 449 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    M. Nastasi, J.W. Mayer, J.K. Hirvonen, Ion-Solid Interaction: fundamentals and Applications (Cambridge University Press, Cambridge, UK, 1996)CrossRefGoogle Scholar
  21. 21.
    P. Kluth, C.S. Schnohr, O.H. Pakarinen, F. Djurabekova, D.J. Sprouster, R. Giulian, M.C. Ridgway, A.P. Byrne, C. Trautmann, D.J. Cookson, K. Nordlund, M. Toulemonde, Fine structure in swift heavy ion tracks in amorphous SiO2. Phys. Rev. Lett. 101, 175503 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    P. Kluth, O.H. Pakarinen, F. Djurabekova, R. Giulian, M.C. Ridgway, A.P. Byrne, K. Nordlund, Nanoscale density fluctuations in swift heavy ion irradiated amorphous SiO2. J. Appl. Phys. 110, 123520 (2011)Google Scholar
  23. 23.
    K. Yasuda, T. Yamamoto, M. Etoh, S. Kawasoe, S. Matsumura, N. Ishikawa, Accumulation of radiation damage and disordering in MgAl2O4 under swift heavy ion irradiation. Int. J. Mater. Res. 102, 1082 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Takaki, K. Yasuda, T. Yamamoto, S. Matsumura, N. Ishikawa, Structure of ion tracks in ceria irradiated with high energy xenon ions. Prog. Nucl. Energy 92, 306 (2016)CrossRefGoogle Scholar
  25. 25.
    O.H. Pakarinen, F. Djurabekova, K. Nordlund, Density evolution in formation of swift heavy ion tracks in insulators. Nucl. Instrum. Meth. Phys. Res. B 268, 3163 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    H. Amekura, P. Kluth, P. Mota-Santiago, I. Sahlberg, V. Jantunen, A.A. Leino, H. Vazquez, K. Nordlund, F. Djurabekova, N. Okubo, N. Ishikawa, Vaporlike phase of amorphous SiO2 is not a prerequisite for the core/shell ion tracks or ion shaping. Phys. Rev. Mater. 2, 096001 (2018)CrossRefGoogle Scholar
  27. 27.
    S. Klaumünzer, G. Schumacher, Dramatic growth of glassy Pd80Si20 during heavy-ion irradiation. Phys. Rev. Lett. 51, 1987 (1983)ADSCrossRefGoogle Scholar
  28. 28.
    S. Klaumünzer, C. Li, G. Schumacher, Plastic flow of borosilicate glass under bombardment with heavy ions. Appl. Phys. Lett. 51, 97 (1987)ADSCrossRefGoogle Scholar
  29. 29.
    M.-D. Hou, S. Klaumunzer, G. Schumacher, Dimensional changes of metallic glasses during bombardment with fast heavy ions. Phys. Rev. B 41, 1144 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    A. Hedler, S.L. Klaumunzer, W. Wesch, Amorphous silicon exhibits a glass transition. Nat. Mater. 3, 804 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    A. Benyagoub, S. Loeffler, M. Rammensee, S. Klaumunzer, Ion-beam-induced plastic deformation in vitreous silica. Radiat. Eff. Defect Solids 110, 217 (1989)CrossRefGoogle Scholar
  32. 32.
    T. van Dillen, E. Snoeks, W. Fukarek, C.M. van Kats, K.P. Velikov, A. van Blaaderen, A. Polman, Anisotropic deformation of colloidal particles under MeV ion irradiation. Nucl. Instrum. Meth. Phys. Res. B 175–177, 350 (2001)CrossRefGoogle Scholar
  33. 33.
    T. van Dillen, M.J.A. de Dood, J.J. Penninkhof, A. Polman, S. Roorda, A.M. Vredenberg, Ion beam-induced anisotropic plastic deformation of silicon microstructures. Appl. Phys. Lett. 84, 3591 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    T. van Dillen, A. van Blaaderen, A. Polman, Shaping colloidal assemblies. Mater. Today 7, 40 (2004)CrossRefGoogle Scholar
  35. 35.
    E. Snoeks, A. Polman, C.A. Volkert, Densification, anisotropic deformation, and plastic flow of SiO2 during MeV heavy ion irradiation. Appl. Phys. Lett. 65, 2487 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    A. Slablab, T.J. Isotalo, J. Mäkitalo, L. Turquet, P.-E. Coulon, T. Niemi, C. Ulysse, M. Kociak, D. Mailly, G. Rizza, M. Kauranen, Fabrication of ion-shaped anisotropic nanoparticles and their orientational imaging by second-harmonic generation microscopy. Sci. Rep. 6, 37469 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    H. Trinkaus, A.I. Ryazanov, Viscoelastic model for the plastic flow of amorphous solids under energetic ion bombardment. Phys. Rev. Lett. 74, 5072 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    W. Wesch, T. Steinbach, M.C. Ridgway, Swift Heavy Ion Irradiation of Amorphous Semiconductors. in Ion Beam Modification of Solids, Eds. by W. Wesch, E. Wendler (Springer, 2016), p. 403Google Scholar
  39. 39.
    S. Klaumünzer, A. Benyagoub, Phenomenology of the plastic flow of amorphous solids induced by heavy-ion bombardment. Phys. Rev. B 43, 7502 (1991)ADSCrossRefGoogle Scholar
  40. 40.
    T. van Dillen, E. van der Giessen, P.R. Onck, A. Polman, Size-dependent ion-beam-induced anisotropic plastic deformation at the nanoscale by nonhydrostatic capillary stresses. Phys. Rev. B 74, 132103 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    C. D’Orleans, J.P. Stoquert, C. Estournès, C. Cerruti, J.J. Grob, J.L. Guille, F. Haas, D. Muller, M. Richard-Plouet, Anisotropy of Co nanoparticles induced by swift heavy ions. Phys. Rev. B 67, 220101 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    C. D’Orleans, C. Cerruti, C. Estournes, J.J. Grob, J.L. Guille, F. Haas, D. Muller, M. Richard-Plouet, J.P. Stoquert, Irradiations of implanted cobalt nanoparticles in silica layers. Nucl. Instrum. Meth. Phys. Res. B 209, 316 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    M.C. Ridgway, R. Giulian, D.J. Sprouster, P. Kluth, L.L. Araujo, D.J. Llewellyn, A.P. Byrne, F. Kremer, P.F.P. Fichtner, G. Rizza, H. Amekura, M. Toulemonde, Role of thermodynamics in the shape transformation of embedded metal nanoparticles induced by swift heavy-ion irradiation. Phys. Rev. Lett. 106, 095505 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    S. Roorda, T. van Dillen, A. Polman, C. Graf, A. van Blaaderen, B.J. Kooi, Aligned gold nanorods in silica made by ion irradiation of core-shell colloidal particles. Adv. Mater. 16, 235 (2004)CrossRefGoogle Scholar
  45. 45.
    E. Snoeks, A. van Blaaderen, T. van Dillen, C.M. van Kats, M.L. Brongersma, A. Polman, Colloidal ellipsoids with continuously variable shape. Adv. Mater. 12, 1511 (2000)CrossRefGoogle Scholar
  46. 46.
    S. Klaumunzer, Modification of nanostructures by high-energy ion beams. Nucl. Instrum. Meth. Phys. Res. B 244, 1 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    H. Amekura, K. Kono, N. Okubo, N. Ishikawa, Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation: A SAXS study. Phys. Status solidi (b) 252, 165 (2015)Google Scholar
  48. 48.
    C. Harkati Kerboua, J.M. Lamarre, M. Chicoine, L. Martinu, S. Roorda, Elongation of gold nanoparticles by swift heavy ion irradiation: surface plasmon resonance shift dependence on the electronic stopping power. Thin Solid Films 527, 186 (2013)Google Scholar
  49. 49.
    G. Rizza, F. Attouchi, P.E. Coulon, S. Perruchas, T. Gacoin, I. Monnet, L. Largeau, Rayleigh-like instability in the ion-shaping of Au–Ag alloy nanoparticles embedded within a silica matrix. Nanotechnology 22, 175305 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    J.C. Pivin, F. Singh, O. Angelov, L. Vincent, Perpendicular magnetization of FePt particles in silica induced by swift heavy ion irradiation. J. Phys. D 42, 025005 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    B. Schmidt, K.H. Heinig, A. Mueklich, C. Akhmadaliev, Swift-heavy-ion-induced shaping of spherical Ge nanoparticles into disks and rods. Nucl. Instrum. Meth. Phys. Res. B 267, 1345 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    L.L. Araujo, R. Giulian, D.J. Sprouster, C.S. Schnohr, D.J. Llewellyn, B. Johannessen, A.P. Byrne, M.C. Ridgway, Structural properties of embedded Ge nanoparticles modified by swift heavy-ion irradiation. Phys. Rev. B 85 (2012)Google Scholar
  53. 53.
    H. Amekura, N. Okubo, N. Ishikawa, D. Tsuya, K. Mitsuishi, Y. Nakayama, U.B. Singh, S.A. Khan, S. Mohapatra, D.K. Avasthi, Swift heavy ion irradiation of ZnO nanoparticles embedded in silica: radiation-induced deoxidation and shape elongation. Appl. Phys. Lett. 103, 203106 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    E.A. Dawi, A.A. Karar, F.H.P.M. Habraken, Anisotropic deformation of NiO nanoparticles embedded in silica under swift heavy ion irradiation. Nanotechnology 30, 285603 (2019)CrossRefGoogle Scholar
  55. 55.
    R. Giulian, P. Kluth, L.L. Araujo, D.J. Sprouster, A.P. Byrne, D.J. Cookson, M.C. Ridgway, Shape transformation of Pt nanoparticles induced by swift heavy-ion irradiation. Phys. Rev. B 78, 125413 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    M.C. Ridgway, P. Kluth, R. Giulian, D.J. Sprouster, L.L. Araujo, C.S. Schnohr, D.J. Llewellyn, A.P. Byrne, G.J. Foran, D.J. Cookson, Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation. Nucl. Instrum. Meth. Phys. Res. B 267, 931 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    Ch. Dufour, V. Khomenkov, G. Rizza, M. Toulemonde, Ion-matter interaction: the three-dimensional version of the thermal spike model. Application to nanoparticle irradiation with swift heavy ions. J. Phys. D 45, 065302 (2012)Google Scholar
  58. 58.
    G. Rizza, P.E. Coulon, V. Khomenkov, C. Dufour, I. Monnet, M. Toulemonde, S. Perruchas, T. Gacoin, D. Mailly, X. Lafosse, C. Ulysse, E.A. Dawi, Rational description of the ion-beam shaping mechanism. Phys. Rev. B 86, 035450 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    E.A. Dawi, G. Rizza, M.P. Mink, A.M. Vredenberg, F. Habraken, Ion beam shaping of Au nanoparticles in silica: particle size and concentration dependence. J. Appl. Phys. 105, 074305 (2009)ADSCrossRefGoogle Scholar
  60. 60.
    H. Amekura, N. Okubo, D. Tsuya, N. Ishikawa, Counterevidence to the ion hammering scenario as a driving force for the shape elongation of embedded nanoparticles. AIP Adv. 7, 085304 (2017)ADSCrossRefGoogle Scholar
  61. 61.
    H. Amekura, S. Mohapatra, U.B. Singh, S.A. Khan, P.K. Kulriya, N. Ishikawa, N. Okubo, D.K. Avasthi, Shape elongation of Zn nanoparticles in silica irradiated with swift heavy ions of different species and energies: scaling law and some insights on the elongation mechanism. Nanotechnology 25, 435301 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    K. Nakano, H. Yoshizaki, Y. Saitoh, N. Ishikawa, A. Iwase, XRD study of yttria stabilized zirconia irradiated with 7.3 MeV Fe, 10 MeV I, 16 MeV Au, 200 MeV Xe and 2.2 GeV Au ions. Nucl. Instrum. Meth. Phys. Res. B 370, 67 (2016)Google Scholar
  63. 63.
    K. Awazu, X. Wang, M. Fujimaki, J. Tominaga, H. Aiba, Y. Ohki, T. Komatsubara, Elongation of gold nanoparticles in silica glass by irradiation with swift heavy ions. Phys. Rev. B 78, 054102 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    Z.G. Wang, C. Dufour, E. Paumier, M. Toulemonde, The Se sensitivity of metals under swift-heavy-ion irradiation: a transient thermal process. J. Phys. Conden. Mat. 6, 6733 (1994)Google Scholar
  65. 65.
    M. Toulemonde, W. Assmann, C. Dufour, A. Meftah, F. Studer, C. Trautmann, Experimental phenomena and thermal spike model description of ion tracks in amorphisabel inorganic insulators. Mat. Fys. Medd. Dan. Vid. Selsk. 52, 263 (2006)Google Scholar
  66. 66.
    M. Sall, I. Monnet, F. Moisy, C. Grygiel, S. Jublot-Leclerc, S. Della-Negra, M. Toulemonde, E. Balanzat, Track formation in III-N semiconductors irradiated by swift heavy ions and fullerene and re-evaluation of the inelastic thermal spike model. J. Mater. Sci. 50, 5214 (2015)ADSCrossRefGoogle Scholar
  67. 67.
    A.A. Leino, O.H. Pakarinen, F. Djurabekova, K. Nordlund, P. Kluth, M.C. Ridgway, Swift heavy ion shape transformation of au nanocrystals mediated by molten material flow and recrystallization. Mater. Res. Lett. 2, 37 (2014)CrossRefGoogle Scholar
  68. 68.
    H. Vázquez, E.H. Åhlgren, O. Ochedowski, A.A. Leino, R. Mirzayev, R. Kozubek, H. Lebius, M. Karlušic, M. Jakšic, A.V. Krasheninnikov, J. Kotakoski, M. Schleberger, K. Nordlund, F. Djurabekova, Creating nanoporous graphene with swift heavy ions. Carbon 114, 511 (2017)CrossRefGoogle Scholar
  69. 69.
    P. Kluth, R. Giulian, D.J. Sprouster, C.S. Schnohr, A.P. Byrne, D.J. Cookson, M.C. Ridgway, Energy dependent saturation width of swift heavy ion shaped embedded Au nanoparticles. Appl. Phys. Lett. 94, 113107 (2009)ADSCrossRefGoogle Scholar
  70. 70.
    H. Amekura, P. Kluth, P. Mota-Santiago, I. Sahlberg, V. Jantunen, A.A. Leino, H. Vazquez, K. Nordlund, F. Djurabekova, On the mechanism of the shape elongation of embedded nanoparticles, unpublishedGoogle Scholar
  71. 71.
    H. Amekura, N. Kishimoto, Implantation of 60 keV copper negative ion into thin SiO2 films on Si: thermal stability of Cu nanoparticles and recovery of radiation damage. J. Appl. Phys. 94, 2585 (2003)ADSCrossRefGoogle Scholar
  72. 72.
    E.A. Dawi, A.M. Vredenberg, G. Rizza, M. Toulemonde, Ion-induced elongation of gold nanoparticles in silica by irradiation with Ag and Cu swift heavy ions: track radius and energy loss threshold. Nanotechnology 22, 215607 (2011)ADSCrossRefGoogle Scholar
  73. 73.
    A. Oliver, J.A. Reyes-Esqueda, J.C. Cheang-Wong, C.E. Roman-Velazquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J.A. Seman, C. Noguez, Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation. Phys. Rev. B 74, 245425 (2006)ADSCrossRefGoogle Scholar
  74. 74.
    C.F. Bohren, B.R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983)Google Scholar
  75. 75.
    H. Amekura, N. Okubo, N. Ishikawa, Optical birefringence of Zn nanoparticles embedded in silica induced by swift heavy-ion irradiation. Opt. Express 22, 29888 (2014)ADSCrossRefGoogle Scholar
  76. 76.
    J.A. Reyes-Esqueda, C. Torres-Torres, J.C. Cheang-Wong, A. Crespo-Sosa, L. Rodriguez-Fernandez, C. Noguez, A. Oliver, Large optical birefringence by anisotropic silver nanocomposites. Opt. Express 16, 710 (2008)ADSCrossRefGoogle Scholar
  77. 77.
    N. Künzner, D. Kovalev, J. Diener, E. Gross, V.Y. Timoshenko, G. Polisski, F. Koch, M. Fujii, Giant birefringence in anisotropically nanostructured silicon. Opt. Lett. 26, 1265 (2001)ADSCrossRefGoogle Scholar
  78. 78.
    F. Genereux, S.W. Leonard, H.M. van Driel, A. Birner, U. Gösele, Large birefringence in two-dimensional silicon photonic crystals. Phys. Rev. B 63, 161101(R) (2001)ADSCrossRefGoogle Scholar
  79. 79.
    O.L. Muskens, M.T. Borgstrom, E.P.A.M. Bakkers, J.G. Rivas, Giant optical birefringence in ensembles of semiconductor nanowires. Appl. Phys. Lett. 89, 233117 (2006)ADSCrossRefGoogle Scholar
  80. 80.
    M. Kobylko, P.-E. Coulon, A. Slablab, A. Fafin, J. Cardin, C. Dufour, A. Losquin, M. Kociak, I. Monnet, D. Mailly, X. Lafosse, C. Ulysse, E. Garcia-Caurel, G. Rizza, Localized plasmonic resonances of prolate nanoparticles in a symmetric environment: experimental verification of the accuracy of numerical and analytical models. Phys. Rev. Appl. 9, 064038 (2018)ADSCrossRefGoogle Scholar
  81. 81.
    N. Ishikawa, A. Iwase, Y. Chimi, O. Michikami, H. Wakana, T. Kambara, Defect production induced by primary ionization in ion-irradiated oxide superconductors. J. Phys. Soc. Jpn. 69, 3563 (2000)ADSCrossRefGoogle Scholar
  82. 82.
    E.V. Benton, On latent track formation in organic nuclear charged particle track detectors. Radiat. Eff. 2, 273 (1970)ADSCrossRefGoogle Scholar
  83. 83.
    K.S. Song, R.T. Williams, Self-Trapped Excitons, 2nd edn. (Springer, Berlin, Heidelberg, 1996)CrossRefGoogle Scholar
  84. 84.
    M. Ueta, H. Kanzaki, K. Kobayashi, Y. Toyozawa, E. Hanamura, Excitonic Processes in Solids (Springer, Berlin, Heidelberg, 1986)CrossRefGoogle Scholar
  85. 85.
    M. Hirai, Y. Suzuki, H. Hattori, T. Ehara, E. Kitamura, Picosecond laserphotolysis on photo-induced defect formation process in KI crystal. J. Phys. Soc. Jpn. 56, 2948 (1987)ADSCrossRefGoogle Scholar
  86. 86.
    F. Agulló-López, A. Climent-Font, A. Muñoz-Martin, A. Zucchiatti, Alternative approaches to electronic damage by ion-beam irradiation: Exciton models. Phys. Status Solidi (a) 213, 2960 (2016)Google Scholar
  87. 87.
    R. Katz, K.S. Loh, L. Daling, G.-R. Huang, An analytic representation of the radial distribution of dose from energetic heavy ions in water, Si, LiF, NaI, and SiO2. Radiat. Eff. Defects Solids 114, 15 (1990)CrossRefGoogle Scholar
  88. 88.
    N. Itoh, Self-trapped exciton model of heavy-ion track registration. Nucl. Instrum. Meth. Phys. Res. B 116, 33 (1996)ADSCrossRefGoogle Scholar
  89. 89.
    A. Meftah, F. Brisard, J.M. Costantini, M. Hage-Ali, J.P. Stoquert, F. Studer, M. Toulemonde, Swift heavy ions in magnetic insulators: a damage-cross-section velocity effect. Phys. Rev. B 48, 920 (1993)ADSCrossRefGoogle Scholar
  90. 90.
    G.A. Thomas, A. Frova, J.C. Hensel, R.E. Miller, P.A. Lee, Collision broadening in the exciton gas outside the electron-hole droplets in Ge. Phys. Rev. B 13, 1692 (1976)ADSCrossRefGoogle Scholar
  91. 91.
    M. Nagai, R. Shimano, M. Kuwata-Gonokami, Electron-hole droplet formation in direct-gap semiconductors observed by mid-infrared pump-probe spectroscopy. Phys. Rev. Lett. 86, 5795 (2001)ADSCrossRefGoogle Scholar
  92. 92.
    F. Agulló-López, A. Mendez, G. García, J. Olivares, J.M. Cabrera, Synergy between thermal spike and exciton decay mechanisms for ion damage and amorphization by electronic excitation. Phys. Rev. B 74, 174109 (2006)ADSCrossRefGoogle Scholar
  93. 93.
    A. Rivera, M.L. Crespillo, J. Olivares, R. Sanz, J. Jensen, F. Agulló-López, On the exciton model for ion-beam damage: the example of TiO2. Nucl. Instrum. Meth. Phys. Res. B 268, 3122 (2010)ADSCrossRefGoogle Scholar
  94. 94.
    A. Rivera, J. Olivares, G. Garcia, F. Agulló-López, Swift heavy ion damage to sodium chloride: synergy between excitation and thermal spikes. J. Phys.: Conden. Mat. 24, 085401 (2012)Google Scholar
  95. 95.
    T. Karasawa, M. Hirai, Color center formation in KI and NaCl crystals by pulsed electron beam. J. Phys. Soc. Jpn. 39, 999 (1975)ADSCrossRefGoogle Scholar
  96. 96.
    R.A. Rymzhanov, N. Medvedev, J.H. O’Connell, A. Janse van Vuuren, V.A. Skuratov, A.E. Volkov, Recrystallization as the governing mechanism of ion track formation. Sci. Rep. 9, 3837 (2019)ADSCrossRefGoogle Scholar
  97. 97.
    H. Amekura. K. Narumi, A. Chiba, Y. Hirano, K. Yamada, D. Tsuya, S. Yamamoto, N. Okubo, N. Ishikawa, Y. Saitoh, C60 ions of 1 MeV are slow but elongate nanoparticles like swift heavy ions of hundreds MeV, Sci. Rep. 9, 14980 (2019)Google Scholar
  98. 98.
    A. Chiba, A. Usui, Y. Hirano, K. Yamada, K. Narumi, and Y. Saitoh, Novel approaches for intensifying negative C60 ion beams using conventional ion sources installed on a tandem accelerator. Quan. Beam. Sci. 4, 13 (2020)Google Scholar
  99. 99.
    Rang Li, K. Narumi, A. Chiba, Y. Hirano, D. Tsuya, S. Yamamoto, Y. Saitoh, N. Okubo, N. Ishikawa, C. Pang, F. Chen, H. Amekura, Matrix-material dependence on the elongation of embedded gold nanoparticles induced by 4 MeV C60 and 200 MeV Xe ion irradiation. Nanotech. 31, 265606 (2020)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Physics, State Key Laboratory of Crystal MaterialsShandong UniversityJinanChina
  2. 2.Hydrogen Materials Engineering Group, Cryogenic Center for Liquid Hydrogen and Materials Science, Center for Green Research on Energy and Environmental MaterialsNational Institute for Materials ScienceTsukubaJapan

Personalised recommendations