Skip to main content

Nanoparticles Synthesized by Ion Implantation

  • Chapter
  • First Online:
Ion Irradiation of Dielectrics for Photonic Applications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 231))

Abstract

In this chapter, the formation processes and properties of nanoparticles (NPs) by ion implantation, which are embedded in transparent insulators such as SiO2, are described. In Sect. 4.1, the processes of the NP formation from implanted ions are demonstrated: the neutralization of the implanted ion charges, nucleation and growth of NPs, the nonmetal-metal transition, etc. Section 4.2 describes the compound NPs formed by multiple implantations, which includes the compound semiconductor NPs formation and implantation doping to the NPs. Section 4.3 is devoted to oxide NPs formed by a combination of metal-ion implantation and following thermal oxidation with attention of the applications for the vacuum fluorescent display and the single photon emitters. In Sect. 4.4, the amorphous NPs and embedded liquid NPs are presented. In the amorphous NPs, much shorter scattering lengths play a role. Solid-liquid transition of embedded NPs is highlighted. Section 4.5 reviews NPs with two or more resonance peaks. Using the ab-initio band calculation combined with Mie theory, the origins of the UV and IR peaks of Zn NPs are discussed. In Sect. 4.6, the magneto-optical effect of Ni NPs in SiO2 and the modified Curie transition are described after introducing the super-paramagnetism of Ni NPs. Section 4.7 summarizes some selected topics, including the additional peak appearance at 600 nm in Ag NPs in SiO2 due to the inter-particle interaction. The high flux implantation effect, the co-irradiation effect of laser, cavity NPs, sandwiched NPs, and nano-planets are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.W. Arnold, Near-surface nucleation and crystallization of an ion-implanted lithia-alumina-silica glass. J. Appl. Phys. 46, 4466 (1975)

    Article  ADS  Google Scholar 

  2. A. Polman, Erbium implanted thin film photonic materials. J. Appl. Phys. 82, 1 (1997)

    Article  ADS  Google Scholar 

  3. C.J. McHargue, G.C. Farlow, P.S. Sklad, C.W. White, A. Perez, N. Kornilios, G. Marest, Iron ion implantation effects in sapphire. Nucl. Instrum. Methods Phys. Res. B 19/20, 813 (1987)

    Google Scholar 

  4. A.L. Stepanov, R.I. Khaibullin, Fabrication of metal nanoparticles in sapphire by low-energy ion implantation. Rev. Adv. Mater. Sci. 9, 109 (2005)

    Google Scholar 

  5. M. Strobel, K.-H. Heinig, W. Moeller, Understanding ion beam synthesis of nanostructures: Modeling and atomistic simulations. Mat. Res. Soc. Symp. Proc. 647, O2.3 (2001)

    Google Scholar 

  6. G. Rizza, Y. Ramjauny, T. Gacoin, L. Vieille, S. Henry, Chemically synthesized gold nanoparticles embedded in a SiO2 matrix: a model system to give insights into nucleation and growth under irradiation. Phys. Rev. B 76, 245414 (2007)

    Article  ADS  Google Scholar 

  7. O. Plaksin, Y. Takeda, H. Amekura, N. Kishimoto, Electronic excitation and optical responses of metal-nanoparticle composites under heavy-ion implantation. J. Appl. Phys. 99, 044307 (2006)

    Article  ADS  Google Scholar 

  8. J. Zhao, X. Chen, G. Wang, Critical size for a metal-nonmetal transition in transition-metal clusters. Phys. Rev. B 50, 15424 (1994)

    Article  ADS  Google Scholar 

  9. H. Amekura, H. Kitazawa, N. Kishimoto, Non-magnetic to magnetic and non-metal to metal transitions in nickel nanoparticles in SiO2 under heat treatment. Nucl. Instrum. Methods Phys. Res. B 219, 825 (2004)

    Article  ADS  Google Scholar 

  10. R.H. Magruder III, R.A. Weeks, R.A. Zuhr, G. Whichard, Optical absorption of Cu implanted silica. J. Non-Cryst. Solids 129, 46 (1991)

    Article  ADS  Google Scholar 

  11. V. Ramaswamy, T.E. Haynes, C.W. White, W.J. Moberly-Chan, S. Roorda, M.J. Aziz, Synthesis of nearly monodisperse embedded nanoparticles by separating nucleation and growth in ion implantation. Nano Lett. 5, 373 (2005)

    Article  ADS  Google Scholar 

  12. W. Nie, Y. Zhang, H. Yu, R. Li, R. He, N. Dong, J. Wang, R. Hubner, R. Bottger, S. Zhou, H. Amekura, F. Chen, Plasmonic nanoparticles embedded in single crystals synthesized by gold ion implantation for enhanced optical nonlinearity and efficient Q-switched lasing. Nanoscale 10, 4228 (2018)

    Article  Google Scholar 

  13. H. Amekura, B. Johannessen, D.J. Sprouster, M.C. Ridgway, Amorphization of Cu nanoparticles: effects on surface plasmon resonance. Appl. Phys. Lett. 99, 043102 (2011)

    Article  ADS  Google Scholar 

  14. C. Maurizio, E. Trave, G. Perotto, V. Bello, D. Pasqualini, P. Mazzoldi, G. Battaglin, T. Cesca, C. Scian, G. Mattei, Enhancement of the Er3+ luminescence in Er-doped silica by few-atom metal aggregates. Phys. Rev. B 83, 195430 (2011)

    Article  ADS  Google Scholar 

  15. T. Cesca, B. Kalinic, N. Michieli, C. Maurizio, A. Trapananti, C. Scian, G. Battaglin, P. Mazzoldi, G. Mattei, Au-Ag nanoalloy molecule-like clusters for enhanced quantum efficiency emission of Er3+ ions in silica. Phys. Chem. Chem. Phys. 17, 28262 (2015)

    Article  Google Scholar 

  16. K. Maex, J. Vanhellemont, S. Petersson, A. Lauwers, Formation of ultra-thin buried CoSi2 layers by ion implantation in (100) Si. Appl. Surf. Sci. 53, 273 (1991)

    Article  ADS  Google Scholar 

  17. S. Mantl, Ion beam synthesis of epitaxial silicides: fabrication, characterization and applications. Mater. Sci. Rep. 8, 1 (1992)

    Article  Google Scholar 

  18. H. Hosono, Simple criterion on collide formation in SiO2 glasses by ion implantation. Jpn. J. Appl. Phys. 32, 3892 (1993)

    Article  ADS  Google Scholar 

  19. E. Cattaruzza, Quantum-dot composite silicate glasses obtained by ion implantation. Nucl. Instrum. Methods Phys. Res. B 169, 141 (2000)

    Article  ADS  Google Scholar 

  20. H. Amekura, M. Yoshitake, O.A. Plaksin, N. Kishimoto, Ch. Buchal, S. Mantl, Implantation-induced nonequilibrium reaction between Zn ions of 60 keV and SiO2 target. Appl. Phys. Lett. 91, 063113 (2007)

    Article  ADS  Google Scholar 

  21. L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990)

    Article  ADS  Google Scholar 

  22. T. Shimizu-Iwayama, M. Ohshima, T. Niimi, S. Nakao, K. Saitoh, T. Fujita, N. Ito, Visible photoluminescence related to Si precipitates in Si+-implanted SiO2. J. Phys.: Condens. Matter 5, L375 (1993)

    Google Scholar 

  23. T. Shimizu-Iwayama, D.E. Hole, P.D. Townsend, Light emission from ion beam induced silicon nanoclusters in silicon dioxide: role of cluster-cluster interactions via a thin oxide. Nucl. Instrum. Methods Phys. Res. B 148, 980 (1999)

    Article  ADS  Google Scholar 

  24. Y. Kanemitsu, T. Ogawa, K. Shiraishi, K. Takeda, Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell. Phys. Rev. B 48, 4883 (1993)

    Article  ADS  Google Scholar 

  25. M.L. Brongersma, A. Polman, K.S. Min, E. Boer, T. Tambo, H.A. Atwater, Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation. Appl. Phys. Lett. 72, 2577 (1998)

    Article  ADS  Google Scholar 

  26. L. Pavesi, L.D. Negro, C. Mazzoleni, G. Franzo, F. Priolo, Optical gain in silicon nanocrystals. Nature 408, 440 (2000)

    Article  ADS  Google Scholar 

  27. J. Valenta, I. Pelant, J. Linnros, Waveguide effects in the measurement of optical gain in a layer of Si nanocrystals. Appl. Phys. Lett. 81, 1396 (2002)

    Article  ADS  Google Scholar 

  28. I. Pelant, Optical gain in silicon nanocrystals: current status and perspectives. Phys. Status Solidi A 208, 625 (2011)

    Article  ADS  Google Scholar 

  29. C.W. White, J.D. Budai, J.G. Zhu, S.P. Withrow, R.A. Zuhr, D. Hembree Jr., D.O. Henderson, A. Ueda, Y.S. Tung, R. Mu, R.H. Magruder, GaAs nanocrystals formed by sequential ion implantation. J. Appl. Phys. 79, 1876 (1996)

    Article  ADS  Google Scholar 

  30. H. Amekura, N. Umeda, Y. Sakuma, N. Kishimoto, Ch. Buchal, Fabrication of ZnO nanoparticles in SiO2 by ion implantation combined with thermal oxidation. Appl. Phys. Lett. 87, 013109 (2005)

    Article  ADS  Google Scholar 

  31. H. Amekura, N. Kishimoto, Fabrication of oxide nanoparticles by ion implantation and thermal oxidation, in Lecture Notes in Nanoscale Science and Technology, vol. 5, ed. by Z. Wang (Springer, New York, 2009), pp. 1–75

    Google Scholar 

  32. C.W. White, J.D. Budai, S.P. Withrow, J.G. Zhu, E. Sonder, R.A. Zuhr, A. Meldrum, D. Hembree Jr., D.O. Henderson, S. Prawer, Encapsulated semiconductor nanocrystals formed in insulators by ion beam synthesis. Nucl. Instrum. Methods Phys. Res. B 141, 228 (1998)

    Article  ADS  Google Scholar 

  33. Y. Kanemitsu, T.J. Inagaki, M. Ando, K. Matsuda, T. Saiki, C.W. White, Photoluminescence spectrum of highly excited single CdS nanocrystals studied by a scanning near-field optical microscope. Appl. Phys. Lett. 81, 141 (2002)

    Article  ADS  Google Scholar 

  34. Y. Kanemitsu, H. Matsubara, C.W. White, Optical properties of Mn-doped CdS nanocrystals fabricated by sequential ion implantation. Appl. Phys. Lett. 81, 535 (2002)

    Article  ADS  Google Scholar 

  35. H. Amekura, M. Tanaka, Y. Katsuya, H. Yoshikawa, M. Ohnuma, Y. Matsushita, K. Kobayashi, N. Kishimoto, Melting-solidification transition of Zn nanoparticles embedded in SiO2: observation by synchrotron X-ray and ultraviolet-visible-near-infrared light. J. Appl. Phys. 108, 104302 (2010)

    Article  ADS  Google Scholar 

  36. M. Gartz, M. Quinten, Broadening of resonances in yttrium nanoparticle optical spectra. Appl. Phys. B 73, 327 (2001)

    Article  ADS  Google Scholar 

  37. A. Ishizumi, C.W. White, Y. Kanemitsu, Space-resolved photoluminescence of ZnS:Cu, Al nanocrystals fabricated by sequential ion implantation. Appl. Phys. Lett. 84, 2397 (2004)

    Article  ADS  Google Scholar 

  38. G. Mattei, Alloy nanoclusters in dielectric matrix. Nucl. Instrum. Methods Phys. Res. B 191, 323 (2002)

    Article  ADS  Google Scholar 

  39. H. Hosono, Importance of Implantation sequence in the formation of nanometer size colloid particles embedded in amorphous SiO2: formation of Composite colloids with Cu core and a Cu2O shell by coimplantation of Cu and F. Phys. Rev. Lett. 74, 110 (1995)

    Article  ADS  Google Scholar 

  40. F. Ren, L.P. Guo, Y. Shi, D.L. Chen, Z.Y. WU, C.Z. Jiang, Formation of Zn–ZnO core-shell nanoclusters by Zn/F sequential ion implantation. J. Phys. D: Appl. Phys. 39, 488 (2006)

    Google Scholar 

  41. M. Strobel, K.-H. Heinig, W. Moeller, Can core/shell nanocrystals be formed by sequential ion implantation? predictions from kinetic lattice Monte Carlo simulations. Nucl. Instrum. Methods Phys. Res. B 148, 104 (1999)

    Article  ADS  Google Scholar 

  42. H. Liu, X. Zhang, Y. Shen, L. Zhang, J. Wang, F. Zhu, B. Zhang, C. Liu, Tailoring the size distribution of Ag nanoparticles embedded in SiO2 by Xe ion postirradiation. Appl. Phys. Express 5, 105002 (2012)

    Article  ADS  Google Scholar 

  43. J. Guangyi, W. Jun, Z. Lihong, L. Huixian, X. Rong, L. Changlong, Remarkably enhanced surface plasmon resonance absorption of Cu nanoparticles in SiO2 by post Zn ion implantation. EPL 101, 57005 (2013)

    Article  Google Scholar 

  44. J. Wang, L. Zhang, X. Zhang, Y. Shen, C. Liu, Synthesis, thermal evolution and optical properties of CuZn alloy nanoparticles in SiO2 sequentially implanted with dual ions. J. Alloy. Compd. 549, 231 (2013)

    Article  Google Scholar 

  45. G. Jia, H. Liu, X. Mu, H. Dai, C. Liu, Xe ion irradiation-induced polycrystallization of Ag nanoparticles embedded in SiO2 and related optical absorption property. Opt. Mater. Express 4, 1303 (2014)

    Article  ADS  Google Scholar 

  46. H. Amekura, N. Umeda, Y. Takeda, J. Lu, N. Kishimoto, Fabrication of nickel oxide nanoparticles in SiO2 by metal-ion implantation combined with thermal oxidation. Appl. Phys. Lett. 85, 1015 (2004)

    Article  ADS  Google Scholar 

  47. C.H. Aaronson, H. Amekura, Y. Sato, N. Kishimoto, Vacuum fluorescent displays utilizing ZnO nanoparticles. J. Appl. Phys. 109, 024506 (2011)

    Article  ADS  Google Scholar 

  48. K. Chung, J. Karle Timothy, A. Khalid, N. Abraham Amanda, R. Shukla, C. Gibson Brant, A. Simpson David, B. Djurišic Aleksandra, H. Amekura, S. Tomljenovic-Hanic, Room-temperature single-photon emission from zinc oxide nanoparticle defects and their in vitro photostable intrinsic fluorescence. Nanophotonics 6, 269 (2017)

    Google Scholar 

  49. W.A. Harrison, Electronic Structure and the Properties of Solids the Physics of the Chemical Bond (Dover, New York, 1980)

    Google Scholar 

  50. M.C. Ridgway, G.d.M. Azevedo, R.G. Elliman, C.J. Glover, D.J. Llewellyn, R. Miller, W. Wesch, G.J. Foran, J. Hansen, A. Nylandsted-Larsen, Ion-irradiation-induced preferential amorphization of Ge nanocrystals in silica. Phys. Rev. B 71, 094107 (2005)

    Google Scholar 

  51. B. Johannessen, P. Kluth, D.J. Llewellyn, G.J. Foran, D.J. Cookson, M.C. Ridgway, Amorphization of embedded Cu nanocrystals by ion irradiation. Appl. Phys. Lett. 90, 073119 (2007)

    Article  ADS  Google Scholar 

  52. B. Johannessen, P. Kluth, D.J. Llewellyn, G.J. Foran, D.J. Cookson, M.C. Ridgway, Ion-irradiation-induced amorphization of Cu nanoparticles embedded in SiO2. Phys. Rev. B 76, 184203 (2007)

    Article  ADS  Google Scholar 

  53. D. Dalacu, L. Martinu, Temperature dependence of the surface plasmon resonance of Au/SiO2 nanocomposite films. Appl. Phys. Lett. 77, 4283 (2000)

    Article  ADS  Google Scholar 

  54. O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, A.M. Dmytruk, Size-dependent melting of spherical copper nanoparticles embedded in a silica matrix. Phys. Rev. B 75, 085434 (2007)

    Article  ADS  Google Scholar 

  55. H. Amekura, M. Tanaka, Y. Katsuya, H. Yoshikawa, H. Shinotsuka, S. Tanuma, M. Ohnuma, Y. Matsushita, K. Kobayashi, Ch. Buchal, S. Mantl, N. Kishimoto, Melting of Zn nanoparticles embedded in SiO2 at high temperatures: effects on surface plasmon resonances. Appl. Phys. Lett. 96, 023110 (2010)

    Article  ADS  Google Scholar 

  56. H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, S. Mantl, Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability. Nanotechnology 18, 395707 (2007)

    Article  Google Scholar 

  57. P. Blaha, K. Schwarz, G.K.H. Madse, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Techn. Universität Wien, Austria, 2001)

    Google Scholar 

  58. H. Amekura, H. Shinotsuka, H. Yoshikawa, Are the triple surface plasmon resonances in Zn nanoparticles true? Nanotechnology 28, 495712 (2017)

    Article  Google Scholar 

  59. C. Ambrosch-Draxl, J.O. Sofo, Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput. Phys. Commun. 175, 1 (2006)

    Article  ADS  Google Scholar 

  60. G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 25, 377 (1908)

    Article  MATH  Google Scholar 

  61. H. Amekura, Y. Takeda, N. Kishimoto, Criteria for surface plasmon resonance energy of metal nanoparticles in silica glass. Nucl. Instrum. Methods Phys. Res. B 222, 96 (2004)

    Article  ADS  Google Scholar 

  62. H. Amekura, H. Kitazawa, N. Umeda, Y. Takeda, N. Kishimoto, Nickel nanoparticles in silica glass fabricated by 60 keV negative-ion implantation. Nucl. Instrum. Methods Phys. Res. B 222, 114 (2004)

    Article  ADS  Google Scholar 

  63. H. Amekura, Y. Takeda, K. Kono, N. Kishimoto, Magneto-optical Kerr effect of nickel nanoparticles in SiO2 fabricated by negative-ion implantation of 60 keV. Trans. Mat. Res. Soc. Jpn. 29, 615 (2004)

    Google Scholar 

  64. K. Sato, Light and Magnetism. 2nd ed. (Asakura Pub., Tokyo, 2001) [Japanese]

    Google Scholar 

  65. H. Amekura, Y. Takeda, N. Kishimoto, Magneto-optical Kerr spectra of nickel nanoparticles in silica glass fabricated by negative-ion implantation. Thin Solid Films 464, 268 (2004)

    Article  ADS  Google Scholar 

  66. R. Ruppin, Optical absorption of copper colloids in photochromic glasses. J. Appl. Phys. 59, 1355 (1986)

    Article  ADS  Google Scholar 

  67. J.C. Maxwell-Garnett, Colors in metal glasses and in metallic films. Phil. Trans. Roy. Soc. A 203, 385 (1904)

    ADS  MATH  Google Scholar 

  68. P.H. Lissberger, P.W. Saunders, Optical and magneto-optical properties of thin film cermets. Thin Solid Films 34, 323 (1976)

    Article  ADS  Google Scholar 

  69. H. Amekura, Y. Fudamoto, Y. Takeda, N. Kishimoto, Curie transition of superparamagnetic nickel nanoparticles in silica glass: a phase transition in a finite size system. Phys. Rev. B 71, 172404 (2005)

    Article  ADS  Google Scholar 

  70. Z. Liu, H. Li, X. Feng, S. Ren, H. Wang, Z. Liu, B. Lu, Formation effects and optical absorption of Ag nanocrystals embedded in single crystal SiO2 by implantation. J. Appl. Phys. 84, 1913 (1998)

    Article  ADS  Google Scholar 

  71. Z. Liu, H. Wang, H. Li, X. Wang, Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal SiO2 by implantation. Appl. Phys. Lett. 72, 1823 (1998)

    Google Scholar 

  72. T. Yamada, K. Fukuda, S. Semboshi, F. Hori, Y. Saitoh, H. Amekura, A. Iwase, in preparation

    Google Scholar 

  73. M.A. Garcı́a, J. Llopis, S.E. Paje, A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films. Chem. Phys. Lett. 315, 313 (1999)

    Google Scholar 

  74. N. Kishimoto, N. Umeda, Y. Takeda, V.T. Gritsyna, T.J. Renk, M.O. Thompson, In-beam growth and rearrangement of nanoparticles in insulators induced by high-current negative copper ions. Vacuum 58, 60 (2000)

    Article  ADS  Google Scholar 

  75. T.T. Lay, H. Amekura, Y. Takeda, N. Kishimoto, In-situ spectroscopy of ion-induced photon emission during metal nanoparticle formation in silica glass with high-flux Cu implantation. Mat. Res. Soc. Symp. Proc. 569, 191 (1999)

    Article  Google Scholar 

  76. F. Ren, X. Xiao, G. Cai, J. Wang, C. Jiang, Engineering embedded metal nanoparticles with ion beam technology. Appl. Phys. A Mater. Sci. Process. 96, 317 (2009)

    Article  ADS  Google Scholar 

  77. N. Umeda, V.V. Bandourko, V.N. Vasilets, N. Kishimoto, Metal precipitation process in polymers induced by ion implantation of 60 keV Cu. Nucl. Instrum. Methods. Phys. Res. B 206, 657 (2003)

    Article  ADS  Google Scholar 

  78. N. Okubo, N. Umeda, Y. Takeda, N. Kishimoto, Enhancement of metal-nanoparticle precipitation by co-irradiation of high-energy heavy ions and laser in silica glass. Nucl. Instrum. Methods Phys. Res. B 206, 610 (2003)

    Article  ADS  Google Scholar 

  79. N. Okubo, N. Kishimoto, Y. Takeda, Dynamics of co-irradiation effects of high-energy ions and photons on nanoparticle precipitation in silica glass. Nucl. Instrum. Methods Phys. Res. B 219, 830 (2004)

    Article  ADS  Google Scholar 

  80. N. Kishimoto, O.A. Plaksin, K. Masuo, N. Okubo, N. Umeda, Y. Takeda, Electronic excitation effects on nanoparticle formation in insulators under heavy-ion implantation. Nucl. Instrum. Methods Phys. Res. B 242, 186 (2006)

    Article  ADS  Google Scholar 

  81. H. Amekura, N. Umeda, Y. Takeda, N. Kishimoto, H. Nejo, in Proceedings of the 5th International Symposium on Advanced Physical Fields (NIRM, Tsukuba, 2000), p. 203

    Google Scholar 

  82. A. Nakajima, H. Nakao, H. Ueno, T. Futatsugi, N. Yokoyama, Coulomb blockade in Sb nanocrystals formed in thin, thermally grown SiO2 layers by low-energy ion implantation. Appl. Phys. Lett. 73, 1071 (1998)

    Article  ADS  Google Scholar 

  83. A. Nakajima, T. Futatsugi, H. Nakao, T. Usuki, N. Horiguchi, N. Yokoyama, Microstructure and electrical properties of Sn nanocrystals in thin, thermally grown SiO2 layers formed via low energy ion implantation. J. Appl. Phys. 84, 1316 (1998)

    Article  ADS  Google Scholar 

  84. F. Ren, C. Jiang, C. Liu, J. Wang, T. Oku, Controlling the morphology of Ag nanoclusters by ion implantation to different doses and subsequent annealing. Phys. Rev. Lett. 97, 165501 (2006)

    Article  ADS  Google Scholar 

  85. V. Bello, G. De Marchi, C. Maurizio, G. Mattei, P. Mazzoldi, M. Parolin, C. Sada, Ion irradiation for controlling composition and structure of metal alloy nanoclusters in SiO2. J. Non-Cryst. Solids 345, 685 (2004)

    Article  ADS  Google Scholar 

  86. G. Rizza, H. Cheverry, T. Gacoin, A. Lamasson, S. Henry, Ion beam irradiation of embedded nanoparticles: toward an in situ control of size and spatial distribution. J. Appl. Phys. 101, 014321 (2007)

    Article  ADS  Google Scholar 

  87. P. Mazzoldi, G. Mattei, Synthesis of metal nanoclusters upon using ion implantation. in Metal Nanoclusters in Catalysis and Materials Science, eds. by B. Corain, G. Schmid, N. Toshima (Elsevier, Amsterdam, 2008), p. 269

    Google Scholar 

  88. A.R. Adhikari, M.B. Huang, D. Wu, K. Dovidenko, B.Q. Wei, R. Vajtai, P.M. Ajayan, Ion-implantation-prepared catalyst nanoparticles for growth of carbon nanotubes. Appl. Phys. Lett. 86, 053104 (2005)

    Article  ADS  Google Scholar 

  89. Y. Choi, J. Sippel-Oakley, A. Ural, Single-walled carbon nanotube growth from ion implanted Fe catalyst. Appl. Phys. Lett. 89, 153130 (2006)

    Article  ADS  Google Scholar 

  90. Y. Hoshino, H. Arima, Y. Saito, J. Nakata, Growth of single-walled carbon nanotubes from hot-implantation-formed catalytic Fe nanoparticles assisted by microwave plasma. Appl. Surf. Sci. 258, 2982 (2012)

    Article  ADS  Google Scholar 

  91. H. Hosono, N. Matsunami, Structural defects and chemical interaction of implanted ions with substrate structure in amorphous SiO2. Phys. Rev. B 48, 13469 (1993)

    Article  ADS  Google Scholar 

  92. H. Hosono, H. Imagawa, Ion-solid chemistry in implanted amorphous SiO2. Nucl. Instrum. Methods Phys. Res. B 91, 510 (1994)

    Article  ADS  Google Scholar 

  93. A. Nakajima, T. Futatsugi, K. Kosemura, T. Fukano, N. Yokoyama, Si single-electron tunneling transistor with nanoscale floating dot stacked on a Coulomb island by self-aligned process. J. Vac. Sci. Technol., B 17, 2163 (1999)

    Article  Google Scholar 

  94. H. Amekura, Y. Takeda, K. Kono, H. Kitazawa, N. Kishimoto, Modification of metal nanoparticles in SiO2 by thermal oxidation, Rev. Adv. Mater. Sci. 5, 178 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, F., Amekura, H., Jia, Y. (2020). Nanoparticles Synthesized by Ion Implantation. In: Ion Irradiation of Dielectrics for Photonic Applications. Springer Series in Optical Sciences, vol 231. Springer, Singapore. https://doi.org/10.1007/978-981-15-4607-5_4

Download citation

Publish with us

Policies and ethics