Skip to main content

Source and Fate of Perchlorate in the Environment: A Grave Concern for World

  • Chapter
  • First Online:
Book cover Contaminants in Drinking and Wastewater Sources

Abstract

Perchlorate (ClO4) is an emerging contaminant and considered as a worldwide problem due to its longer persistence in different environments. ClO4 was first detected in 1985 in wells at industrial sites of California, USA. ClO4 is either naturally occurring or synthetic by origin. Natural atmospheric process is responsible for formation of natural ClO4, and it is influenced by lightning and UV-mediated photo-oxidation. Another natural source is volcanic eruptions. The anthropogenic pathway of introduction of ClO4 into the environment is more dominant than the geogenic sources. Synthetic perchlorates are mainly produced for military purposes or as a propellant in solid rocket fuels. ClO4 ions are highly soluble in water and can contaminate all sources of water, soil, food, etc., and ultimately living organisms including human via food chain. In case of human, ClO4 is present in different human body fluids such as urine, breast milk, saliva and blood, and it is mainly due to the ingestion of ClO4 contaminated water and food. Due to same ionic charge and almost same ionic radius of ClO4 ions and iodide ion, iodide uptake by the thyroid follicle cells is hinderer by ingestion of ClO4. Lack of iodine uptake decreases thyroid hormone production, and this hormonal disbalance results in hyperplasia, which ultimately may lead to hypothyroidism. The World Health Organization (WHO) established provisional maximum tolerable daily intake (PMTDI) of 0.01 mg/kg body weight for ClO4. Ion chromatography is considered as the basic method of analysing ClO4 in drinking water and environmental samples. Many biological processes such as natural biodegradation, phytoremediation and bioreactor and physicochemical processes such as chemical reduction, adsorption, membrane filtration, ion exchange and electrochemical reduction or removal of ClO4 by iron nanoparticles, catalytic reactors, etc., are available for the remediation of ClO4 in contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albright R, Alleman B, Barnwell B, Becvar E, Call B, Cullison G, Fieldler L (2008) Remediation technologies for Perchlorate contamination in water and soil. The Interstate Technology & Regulatory Council, Washington

    Google Scholar 

  • Aranda-Rodriguez R, Lemieux F, Jin Z, Hnatiw J, Tugulea AM (2017) (Yetmore) challenges for water treatment plants: potential contribution of hypochlorite solutions to bromate, chlorate, chlorite and perchlorate in drinking water. J Water Supply Res Technol AQUA 66:621–631. https://doi.org/10.2166/aqua.2017.147

    Article  Google Scholar 

  • Backus SM, Klawuun P, Brown S, D’sa I, Sharp S, Surette C, Williams DJ (2005) Determination of perchlorate in selected surface waters in the Great Lakes Basin by HPLC/MS/MS.Chemosphere, vol 61, pp 834–84

    Google Scholar 

  • Baidas S, Gao B, Meng X (2011) Perchlorate removal by quaternary amine modified reed. J Hazard Mater 189:54–61

    CAS  Google Scholar 

  • Bansal R, Deobald L, Crawford R, Paszczynski A (2009) Proteomic detection of proteins involved in perchlorate and chlorate metabolism. Biodegradation 20:603–620

    CAS  Google Scholar 

  • Barron L, Nesterenko PN, Paull B (2006) Rapid on-line preconcentration and suppressed micro-bore ion chromatography of part per trillion levels of perchlorate in rainwater samples. Anal Chim Acta 567:127–134. https://doi.org/10.1016/j.aca.2006.01.038

    Article  CAS  Google Scholar 

  • Blanton ML, Specker JL (2007) The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction. Crit Rev Toxicol 37:97–115

    CAS  Google Scholar 

  • Böhlke JK, Andraski BJ, Fahlquist L, Bexfield L, Eckardt FD, Gates JB, Davila AF, McKay CP, Rao B et al (2015) Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments. Geochim Cosmochim Acta 164:502–522. https://doi.org/10.1016/j.gca.2015.05.016

    Article  CAS  Google Scholar 

  • Brabant G, Bergmann P, Kirsch CM, Kohrle J, Hesch RD, von zur Muhlen A (1992) Early adaptation of thyrotropin and thyroglobulin secretion to experimentally decreased iodine supply in man. Metabolism 41:1093–1096

    CAS  Google Scholar 

  • Brown GM (1986) The reduction of chlorate and perchlorate ions at an active titanium electrode. J Electroanal Chem Interfac 198:319–330

    CAS  Google Scholar 

  • Brown GM, Gu B (2006) The chemistry of perchlorate in the environment. Perchlorate: environmental occurence, interactions and treatment. Springer, Boston, MA, pp 17–47

    Google Scholar 

  • Cal EPA (California Environmental Protection Agency) (2004) Perchlorate contamination treatment alternatives. draft; office of pollution prevention and technology development, Department of Toxic Substances Control, Sacramento, CA, USA

    Google Scholar 

  • Caldwell DJ, King JH, Kinkead ER, Wolfe RE, Narayanan L, Mattie DR (1995) Results of a fourteen-day oral dosing toxicity study of ammonium perchlorate. In: Proceedings of the JANNAF safety and environmental protection subcommittee meeting, Florida, USA, vol 1

    Google Scholar 

  • Cao F, Jaunat J, Sturchio N, Cancès B, Morvana X, Devos A (2019) Worldwide occurrence and origin of perchlorate ion in waters: a review. Sci Total Environ 661:737–749

    CAS  Google Scholar 

  • Cao J, Elliott D, Zhang W (2005) Perchlorate reduction by nanoscale iron particles. J Nanopart Res 7:499–506

    CAS  Google Scholar 

  • Cheng Q, Perlmutter L, Smith PN, McMurry ST, Jackson WA, Anderson TA (2004) A study on perchlorate exposure and absorption in beef cattle. J Agr Food Chem 52:3456–3461

    CAS  Google Scholar 

  • Clausen J, Robb J, Curry D, Korte N (2004) A case study of contaminants on military ranges: Camp Edwards, Massachusetts, USA. Environ Pollut 129:13–21. https://doi.org/10.1016/j.envpol.2003. https://doi.org/10.002

  • Coates JD, Michaeliduo U, Bruce RA, O’Connor SM, Crespi JN, Achenbach LA (1999) The ubiquity and diversity of dissimilatory (per)chlorate reduction. In: Urbanski T (ed) Perchlorate in Environment, Kluwer Academic/Plenum, New York, NY, USA, pp 257–270

    Google Scholar 

  • Coleman M, Coates J (2004) Chlorine isotopic characterization of perchlorate. Perchlorate in California’sGroundwater. In: Proceedings of The Eleventh Symposium in GRA’s Series on Groundwater Contaminants; Groundwater Resources Association, Glendale, CA, USA, August 4

    Google Scholar 

  • Darracq G, Baron J, Joyeux M (2014) Kinetic and isotherm studies on perchlorate

    Google Scholar 

  • Dasgupta PK, Dyke JV, Kirk AB, Jackson WA (2006) Perchlorate in the United States. analysis of relative source contributions to the food chain. Environ Sci Technol 40:6608–6614

    CAS  Google Scholar 

  • Dasgupta PK, Martinelango PK, Jackson WA, Anderson TA, Tian K, Tock RW, Rajagopalan S (2005) The origin of naturally occurring perchlorate: the role of atmospheric processes. Environ Sci Technol 39:1569–1575. https://doi.org/10.1021/es048612x

    Article  CAS  Google Scholar 

  • Dean KE, Palachek RM, Noel JM, Warbritton R, Aufderheide J, Wireman J (2004) Development of freshwater water-quality criteria for perchlorate. Environ Toxicol Chem 23:1441–1451

    CAS  Google Scholar 

  • Duncan PB, Morrison RD, Vavricka E (2005) Forensic identification of anthropogenic and naturally occurring sources of perchlorate. Environ Forensics 6:205–215

    CAS  Google Scholar 

  • Earley JE, Kallen TW (1971) Reduction of the Perchlorate ion by Aquoruthenium (II). Inorg Chem 10:1152–1155

    CAS  Google Scholar 

  • Ericksen GE (1981) Geology and origin of the chilean nitrate deposits. United States Government printing Office, Washington, p 37. https://doi.org/10.3133/pp1188

  • Faris B, Vlassopoulus D (2003) A systematic approach to in situ bioremediation in groundwater. Remediation 13:27

    Google Scholar 

  • Fram MS, Belitz K (2011) Probability of detecting perchlorate under natural conditions in deep groundwater in California and the southwestern United States. Environ Sci

    Google Scholar 

  • Furdui VI, Zheng J, Furdui A (2018) Anthropogenic Perchlorate increases since 1980 in the Canadian high Arctic. Environ Sci Technol 52:972–981. https://doi.org/10.1021/acs.est.7b03132

    Article  CAS  Google Scholar 

  • Goleman WL, Carr JA (2006) Contribution of Ammonium ions to the lethality and antimetamorphic effects of Ammonium Perchlorate. Environ Toxicol Chem 25:1060–1067

    CAS  Google Scholar 

  • Hautman DP, Munch DJ, Eaton AD, Haghani AW (1999) Method 314.0.–determination of Perchlorate in drinking water using Ion Chromatography, Revision 1; US Environmental Protection Agency, Cincinnati, OH, USA, Doc No EPA/815/B-99/003

    Google Scholar 

  • Her N, Jeong H, Kim J, Yoon Y (2011) Occurrence of perchlorate in drinking water and seawater in South Korea. Arch Environ Con Tox 61:166–172

    CAS  Google Scholar 

  • Hurley K, Shapley J (2006) Catalytic reduction by hydrogen of perchlorate in water. In: Proceedings of the 232nd ACS National Meeting, ACS, San Francisco, CA, USA, 10–14 September

    Google Scholar 

  • ITRC (2005) (Interstate Technology & Regulatory Council) Perchlorate: overview of issues, status, and remedial options. PERCHLORATE-1; Interstate Technology & Regulatory Council, Perchlorate Team, Washington, D.C., USA, 2005. Available online: http://www.itrcweb.org. Accessed 2006

  • Jackson WA, Anandam S, Anderson TA, Lehman T, Rainwater K, Rajagopalan S, Ridley M, and Tock WR. (2005). Perchlorate occurrence in the Texas Southern high plains aquifer system. Groundwater Monit Rem 25:1–13

    Google Scholar 

  • Kalinski K, Bannerman DD, Hare WR, Paape MJ, McCarty GW, Kauf AC, Sadeghi AM, Starr JL, McConnell LL (2007) Predicting perchlorate exposure in milk from concentrations in dairy feed. J Agr Food Chem 55:8806–8813

    Google Scholar 

  • Kannan K, Praamsma ML, Oldi JF, Kunisue T, Sinha RK (2009) Occurrence of perchlorate in drinking water, groundwater, surface water and human saliva from India. Chemosphere 76:22–26

    CAS  Google Scholar 

  • Keil D, Waren A, Bullard-Dillard K, Jenny M, Eudaly J (1998) Effects of ammonium perchlorate on immunological, hematological, and thyroid parameters. Department of Medical Laboratory Sciences, Medical University of South Carolina, Charleston, South Carolina, USA

    Google Scholar 

  • Kessler FJ, Kruskemper HJ (1966) Experimentelle Schilddrusentumoren durch mehrjahrige Zufuhr von Kaliumperchlorat. [Experimental thyroid tumors caused by long-term administration of potassium perchlorate.] Klin Wochenschr, vol 44, pp 1154–1156

    Google Scholar 

  • Kim D-H, Yoon Y, Baek K, Han J, Her N (2014) Occurrence of perchlorate in rice from different areas in the Republic of Korea. Environ Sci Pollut R 21:1251–1257

    CAS  Google Scholar 

  • Kumarathilaka P, Oze C, Indraratne SP, Vithanage M (2016) Perchlorate as an emerging contaminant in soil, water and food. Chemosphere 1–11

    Google Scholar 

  • Lang GG, Sas NS, Ujvari M, Horanyi G (2008) The kinetics of the electrochemical reduction of perchlorate ions on rhodium. Electrochim Acta 53:7436–7444

    CAS  Google Scholar 

  • Lee C, Kramer T (2007) Electrochemical reduction of perchlorate ions on pitting corrosion developed titanium surface. In: Proceedings of the 233rd ACS National Meeting, ACS, Chicago, IL, USA, March 25–29

    Google Scholar 

  • Leung AM, Pearce EN, Braverman LE (2010) Perchlorate, iodine and the thyroid. Best Pract Res Cl En 24:133–141

    CAS  Google Scholar 

  • Lewandowski TA, Seeley MR, Beck BD (2004) Interspecies differences in susceptibility to perturbation of thyroid homeostasis: a case study with perchlorate. Regul Toxicol Pharmacol 39:348–362

    CAS  Google Scholar 

  • Logan BE (2001) Peer reviewed: assessing the outlook for perchlorate remediation. Environ Sci Technol 35:482A–487A

    CAS  Google Scholar 

  • Lybrand RA, Bockheim JG, Ge W, Graham RC, Hlohowskyj SR, Michalski G, Prellwitz JS, Rech JA, Wang F, Parker DR (2016) Nitrate, perchlorate, and iodate co-occur in coastal and inland deserts on Earth. Chem Geol 442:174–186. https://doi.org/10.1016/j.chemgeo.2016.05.023

    Article  CAS  Google Scholar 

  • Mastrocicco M, Di G, Vincenzi F, Colombani N, Castaldelli G (2017) Chlorate origin and fate in shallow groundwater below agricultural landscapes. Environ Pollut 231:1453–1462. https://doi.org/10.1016/j.envpol.2017.09.007

    Article  CAS  Google Scholar 

  • Mendiratta SK, Dotson RL, Brooker RT (1996) Perchloric Acid and Perchlorates. In: Kirk-Othmer encyclopedia of chemical technology. Wiley, New York

    Google Scholar 

  • Mihelcic JR (1999) Fundamentals of environmental engineering. pp 119–120, Wiley, New York, NY, USA

    Google Scholar 

  • Morss C (2003) Perchlorate groundwater treatment. Pollut Eng 35:18

    Google Scholar 

  • Nadaraja AV, Puthiyaveettil PG, Bhaskaran K (2015) Surveillance of perchlorate in ground water, surface water and bottled water in Kerala, India. J Environ Health Sci Eng 13:56. https://doi.org/10.1186/s40201-0150213z

    Article  Google Scholar 

  • Nadaraja V, Veetil A, Vidyadharan A, Bhaskaran K (2013) Kinetics of chlorite dismutase in a perchlorate degrading reactor sludge. Environ Technol 34:2353–2359

    Google Scholar 

  • Nzengung VA, Wang C, Harvey G (1999) Plant-mediated transformation of perchlorate into chloride. Environ Sci Technol 33:1470–1478

    CAS  Google Scholar 

  • Oh S, Chiu P, Kim B, Cha D (2006) Enhanced reduction of perchlorate by elemental iron at elevated temperatures. J Hazard Mater B129:304–307

    Google Scholar 

  • Oum KW, Lakin MJ, DeHaan DO, Brauers T, Finlayson-Pitts BJ (1998) Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles. Science 279:74–77

    CAS  Google Scholar 

  • Pajer Z, Kalisnik M (1991) The effect of sodium perchlorate and ionizing irradiation on the thyroid parenchymal and pituitary thyrotropic cells. Oncology 48:317–320

    CAS  Google Scholar 

  • Park J, Rinchard J, Liu F, Anderson TA, Kendall RJ, Theodorakis CW (2006) The thyroid endocrine disruptor perchlorate affects reproduction, growth, and survival of mosquitofish. Ecotoxicol Environ Safety 63:343–352

    CAS  Google Scholar 

  • Parker DR, Seyfferth AL, Reese BK (2008) Perchlorate in groundwater: a synoptic survey of “pristine” sites in the coterminous United States. Environ Sci Technol 42:1465–1471. https://doi.org/10.1021/es7021957

    Article  CAS  Google Scholar 

  • Patino R, Wainscott MR, Cruz-Li EI, Balakrishnan S, McMurry C, Blazer VS, Anderson TA (2003) Effects of ammonium perchlorate on the reproductive performance and thyroid follicle histology of zebrafish. Environ Toxicol Chem 22:1115–1121

    CAS  Google Scholar 

  • Plummer LN, Böhlke JK, Doughten MW (2006) Perchlorate in pleistocene and Holocene groundwater in north-central New Mexico. Environ Sci Technol 40:1757–1763. https://doi.org/10.1021/es051739h

    Article  CAS  Google Scholar 

  • Poghosyan A, Sturchio NC, Morrison CG, Beloso AD, Guan Y, Eiler JM, Jackson WA, Hatzinger PB (2014) Perchlorate in the Great Lakes: isotopic composition and origin. Environ Sci Technol 48:11146–11153

    CAS  Google Scholar 

  • Polk J, Murray C, Onewokae C, Tolbert DE, Togna AP, Guarini WJ, Frisch S, Del Vecchio M (2001) Case study of ex-situ biological treatment of perchlorate-contaminated groundwater. In: Proceedings of 4th tri-services environmental technology symposium, San Diego, CA, USA, June 18–20

    Google Scholar 

  • Qin X, Zhang T, Gan Z, Sun H (2014) Spatial distribution of perchlorate, iodide and thiocyanate in the aquatic environment of Tianjin, China: environmental source analysis. Chemosphere 111:201–208

    CAS  Google Scholar 

  • Raj JRA, Muruganandam L (2012) Biodegradation of perchlorate from real and synthetic effluent by Proteobacterium ARJR SMBS in a stirred tank bioreactor system. Environ Technol 34:841–852

    Google Scholar 

  • Rajagopalan S, Anderson T, Fahlquist L, Rainwater K, Ridley M, Jackson WA (2006) Widespread presence of naturally occurring perchlorate in high plains of Texas and New Mexico. Environ Sci Technol 40(31):56–62

    Google Scholar 

  • Rao B, Anderson TA, Orris GJ, Rainwater KA, Rajagopalan S, Sandvig RM, Scanlon BR, Stonestrom DA, Walvoord MA, Jackson WA (2007) Widespread natural perchlorate in unsaturated zones of the Southwest United States. Environ Sci Technol 41:4522–4528. https://doi.org/10.1021/es062853i

    Article  CAS  Google Scholar 

  • Rice CP, Baldwin Vi RL, Abbott LC, Hapeman CJ, Capuco AV, Le A, Bialek Kalinski K, Bannerman DD, Hare WR, Paape MJ, McCarty GW, Kauf AC, Sadeghi AM, Starr JL, McConnell LL (2007) Predicting perchlorate exposure in milk from concentrations in dairy feed. J Agr Food Chem 55:8806–8813

    CAS  Google Scholar 

  • Rice CP, Baldwin ViRL, Abbott LC, Hapeman CJ, Capuco AV, Le A, Bialek-Rikken GB, Kroon AGM, van Ginkel GC (1996) Transformation of (per) chlorate into chloride by a newly isolated bacterium: reduction and dismutation. Appl Microbiol Biotechnol 45:420–426

    Google Scholar 

  • Roach JD, Tush D (2008) Equilibrium dialysis and ultrafiltration investigations of perchlorate removal from aqueous solution using poly (diallyldimethylammonium) chloride. Water Res 42:1204–1210

    CAS  Google Scholar 

  • Rusanova M, Polaskova P, Muzikar M, Fawcett R (2006) Electrochemical reduction of perchlorate ions on platinum-activated nickel. Electrochim Acta 51:3097–3101

    CAS  Google Scholar 

  • Ridley SM, Tock R (2005) Perchlorate occurrence in the Texas southern high plains aquifer system. Ground Water Monit Remediat 25:137–149. https://doi.org/10.1111/j.1745-6592.2005.0009.x

    Article  Google Scholar 

  • Sartain HS, Craig M (2003) Ex-situ treatment of perchlorate contaminated groundwater. In: Proceedings of In Situ and On-Site bioremediation-the seventh international symposium, Orlando, Florida, USA, June 2–5

    Google Scholar 

  • Scanlon BR, Gates JB, Reedy RC, Jackson WA, Bordovsky JP, (2010) Effects of irrigated agroecosystems: 2. Quality of soil water and groundwater in the southern High Plains, Texas. Water Resour Res 46:W09538. https://doi.org/10.1029/2009WR008428

  • Siddiqui MS (1996) Chlorine-ozone interactions: formation of chlorate. Water Res 30:2160–2170

    CAS  Google Scholar 

  • Smith PN, Severt SA, Jackson WA, Anderson TA (2006) Thyroid function and reproductive success in rodents exposed to perchlorate via food and water. Environ Toxicol Chem 25:1050–1059

    CAS  Google Scholar 

  • Smith PN, Theodorakis CW, Anderson TA, Kendall RJ (2001) Preliminary assessment of perchlorate in ecological receptors at the Longhorn Army Ammunition Plant (LHAAP), Karnack, Texas. Ecotoxicology 10:305–313

    CAS  Google Scholar 

  • Smith PN, Yu L, McMurry ST, Anderson TA (2004) Perchlorate in water, soil, vegetation, and rodents collected from the Las Vegas Wash, Nevada, USA. Environ Pollut 132:121–127

    CAS  Google Scholar 

  • Srinivasan A, Viraraghavan T (2009) Perchlorate: health effects and technologies for its removal from water resources. Int J Environ Res Public Health 6:1418–1442. https://doi.org/10.3390/ijerph6041418

  • Sturchio N, Hatzinger P, Arkins M, Suh C, Heraty L (2003) Chlorine isotope fractionation during microbial reduction of perchlorate. Environ Sci Technol 37:3859–3863

    CAS  Google Scholar 

  • Sturchio NC, Beloso A Jr, Heraty LJ, Wheatcraft S, Schumer R (2014) Isotopic tracing of perchlorate sources in groundwater from Pomona, California. Appl Geochem 43:80–87

    CAS  Google Scholar 

  • Susarla S, Bacchus ST, Harvey G, McCutcheon SC (2000) Phyto transformations of perchlorate contaminated water. Environ Technol 21:1055–1065

    CAS  Google Scholar 

  • Tan K, Anderson TA, Jackson WA (2005) Temporal and spatial variation of perchlorate in streambed sediments: results from in-situ dialysis samplers. Environ Pollut 136:283–291. https://doi.org/10.1016/j.envpol.2004.12.037

    Article  CAS  Google Scholar 

  • Tietge JE, Holcombe GW, Flynn KM, Kosian PA, Korte JJ, Anderson LE, Wolf DC, Degitz SJ (2005) Metamorphic inhibition of Xenopus laevis by sodium perchlorate: effects on development and thyroid histology. Environ Toxicol Chem 24:926–933

    CAS  Google Scholar 

  • Trumpolt CW, Crain M, Cullison GD, Flanagan SJP, Siegel L, Lathrop S (2005) Perchlorate: sources, uses, and occurrences in the environment. Remediat J 16:65–89. https://doi.org/10.1002/rem.20071

    Article  Google Scholar 

  • Urbanski ET, Collette TW, Robarge WP, Hall WL, Skillen JM, Kane PF (2001) Survey of fertilizers and related materials for Perchlorate (ClO4). Environmental Protection Agency, Cincinnati, OH, USA, EPA/600/R-01/047

    Google Scholar 

  • USEPA (2000) New Method 9058–determination of perchlorate using ion chromatography with chemical suppression conductivity detection, Washington, DC, USA

    Google Scholar 

  • Van Ginkel GC, Plugge CM, Stroo CA (1995) Reduction of chlorate with various energy substrates and inocula under anaerobic conditions. Chemosphere 31:4057–4066

    Google Scholar 

  • Von Clarmann T (2013) Chlorine in the stratosphere. Atmosfera 26:415–458. https://doi.org/10.1016/S0187-6236(13)71086-5

    Article  Google Scholar 

  • Wagner HP, Pepich BV, Pohl C, Later D, Joyce R, Srinivasan K, Thoams D, Woodruff A, DeBorba B, Munch DJ (2006) US environmental protection agency method 314.1, an automated sample preconcentration/matrix elimination suppressed conductivity method for the analysis of trace levels (0.50 mg/L) of perchlorate in drinking water. J Chromatogr A 1118:85–93

    CAS  Google Scholar 

  • Wagner HP, Pepich BV, Pohl C, Later D, Srinivasan K, Lin R, DeBorba B, Munch DJ (2007) Selective method for the analysis of perchlorate in drinking waters at nanogram per liter levels, using two-dimensional ion chromatography with suppressed conductivity detection. J Chromatogr A 1155:15–21

    CAS  Google Scholar 

  • Wang DM, Lin HY, Shah SI, Ni CY, Huang CP (2009) Indirect electrochemical reduction of perchlorate and nitrate in dilute aqueous solutions at the Tiewater interface. Separ Purif Technol 67:127–134

    CAS  Google Scholar 

  • Wendelken SC, Vanatta LE, Coleman DE, Munch DJ (2006) Perchlorate in water via US environmental protection agency method 331: determination of method uncertainties, lowest concentration minimum reporting levels, and Hubaux-Vos detection limits in reagent water and simulated drinking water. J Chromatogr A 1118:94–99

    CAS  Google Scholar 

  • Wilkin RT, Fine DD, Burnett NG (2007) Perchlorate behavior in a municipal lake following fireworks displays. Environ Sci Technol 41:3966–3971. https://doi.org/10.1021/es0700698

    Article  CAS  Google Scholar 

  • Wisniak J, Garcés (2001) The rise and fall of the Salitre (sodium nitrate) industry. Indian J Chem Technol 8:427–438

    CAS  Google Scholar 

  • Xie Y, Li S, Wu K, Wang J, Liu G (2011) A hybrid adsorption/ultrafiltration process for perchlorate removal. J Membr Sci 366:237–244

    CAS  Google Scholar 

  • Xiong Z, Zhao D (2006) Destruction of perchlorate in fresh and saline water by stabilized zero-valent iron nanoparticles. In: Proceedings of the 231st ACS national meeting, ACS, Atlanta, GA, USA, March 26–30

    Google Scholar 

  • Xu X, Gao B, Jin B, Zhen H, Wang X, Dai M (2015) Study of microbial perchlorate reduction: considering of multiple pH, electron acceptors and donors. J Hazard Mater 285:228–235

    CAS  Google Scholar 

  • Ye L, You H, Yao J, Su H (2012) Water treatment technologies for perchlorate: a review. Desalination 298:1–12

    CAS  Google Scholar 

  • Ye L, You H, Yao J, Kang X, Tang L (2013) Seasonal variation and factors influencing perchlorate in water, snow, soil and corns in Northeastern China. Chemosphere 90:2493–2498

    CAS  Google Scholar 

  • Yoon J, Amy G, Chung J, Sohn J, Yoon Y (2009) Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes. Chemosphere 77:228–235

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulami Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, P. (2021). Source and Fate of Perchlorate in the Environment: A Grave Concern for World. In: Kumar, M., Snow, D., Honda, R., Mukherjee, S. (eds) Contaminants in Drinking and Wastewater Sources. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4599-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4599-3_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4598-6

  • Online ISBN: 978-981-15-4599-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics