Skip to main content

Life Cycle Assessment Framework for Sustainable Development in Manufacturing Environment

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

To meet the changeing customer perception and environmental challenges, ecological concerns have to be assimilated into various types of judgments made by business organizations, individuals, public organizations, and policy representatives. The need for detailed information on the environmental effect leads to the development of different ecological assessment tools. The life cycle assessment (LCA) is a tool of Green Lean Six Sigma (GLS) that provides a detailed analysis of the unit process of the product system. It considers life cycle perspective, quantitative, based on science and encompasses a wide spectrum of ecological issues. The inclusive application of LCA requires a clear understanding of the goal line and opportunity of the LCA from a system point, data for analysis of data from life cycle point of view, and identification and interpretation of various green measures. Therefore taking into considerations all these issues pertaining to LCA, the present work provides a systematic LCA procedure for the manufacturing organizations. The present framework denotes phases to be considered during goal and scope definition of LCA study, different types of data set to be considered for analysis and also provides guidelines to analyze and interpret the results associated with inventory and other green measures. The present work will facilitate the organizations to make sustainable decisions; besides, it will provide a deep insight into the organizations’ managers to execute life cycle assessment for the benefits of three dimensions of sustainability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rathi, R., Khanduja, D., & Sharma, S. K. (2016). A fuzzy MADM approach for project selection: a Six Sigma case study. Decision Science Letters, 5(2), 255–268.

    Article  Google Scholar 

  2. Singh, M., & Rathi, R. A structured review of Lean Six Sigma in various industrial sectors. International Journal of Lean Six Sigma10(2), 622–664 (2019). https://doi.org/10.1108/ijlss-03-2018-0018.

  3. Rathi, R., Khanduja, D., & Sharma, S. K. (2015). Six sigma perceptions for capacity waste management in Indian manufacturing sector. Journal of Material Science and Mechanical Engineering, 2(7), pp. 36–40.

    Google Scholar 

  4. Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., et al. (2009). Recent developments in life cycle assessment. Journal of Environmental Management, 91(1), 1–21.

    Article  Google Scholar 

  5. Baumann, M., Held, M., Herrmann, C., Saraev, A., Riese, O., & Steininger, H. (2012). Ecodesign tool for SMEs in the electronics sector. In 2012 Electronics goes green 2012 (pp. 1–8). IEEE.

    Google Scholar 

  6. Rathi, R., Khanduja, D., & Sharma, S. K. (2016). Efficacy of fuzzy MADM approach in Six Sigma analysis phase in automotive sector. Journal of Industrial Engineering International12(3), 377–387. https://doi.org/10.1007/s40092-016-0143-0.

  7. Kaswan, M., & Rathi, R. (2019). Analysis and modeling the enablers of Green Lean Six Sigma implementation using Interpretive Structural Modeling. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.05.253.

    Article  Google Scholar 

  8. Zhang, H., Nagel, J. K., Al-Qas, A., Gibbons, E., & Lee, J. J. Y. (2018). Additive manufacturing with bioinspired sustainable product design: A conceptual model. Procedia Manufacturing, 26, 880–891.

    Article  Google Scholar 

  9. Roy, P., Nei, D., Orikasa, T., Xu, Q., Okadome, H., Nakamura, N., et al. (2009). A review of life cycle assessment (LCA) on some food products. Journal of Food Engineering, 90(1), 1–10.

    Article  Google Scholar 

  10. Epping, K., & Zhang, H. (2018). A sustainable decision-making framework for transitioning to robotic welding for small and medium manufacturers. Sustainability, 10(10), 3651.

    Article  Google Scholar 

  11. Pomponi, F., & Moncaster, A. (2018). Scrutinising embodied carbon in buildings: The next performance gap made manifest. Renewable and Sustainable Energy Reviews, 81, 2431–2442.

    Article  Google Scholar 

  12. Rathi, R., Khanduja, D., & Sharma, S. K. (2016). Capacity waste management at automotive industry in India: A Six Sigma observation. Acounting, 2(3), 109–116.

    Article  Google Scholar 

  13. Kurczewski, P. (2014). Life cycle thinking in small and medium enterprises: The results of research on the implementation of life cycle tools in Polish SMEs—Part 1: Background and framework. The International Journal of Life Cycle Assessment, 19(3), 593–600.

    Article  Google Scholar 

  14. Skawińska, E., & Zalewski, R. I. (2018). Circular economy as a management model in the paradigm of sustainable development. Management, 22(2), 217–233.

    Article  Google Scholar 

  15. Berendt, F., Fortin, M., Suchomel, C., & Schweier, J. (2018). Productivity, costs, and selected environmental impacts of remote-controlled mini forestry crawlers. Forests, 9(10), 591.

    Article  Google Scholar 

  16. Neher, D. (2018). Ecological sustainability in agricultural systems: definition and measurement. In Integrating sustainable agriculture, ecology, and environmental policy, pp. 51–61.

    Google Scholar 

  17. Vink, E. T., Rabago, K. R., Glassner, D. A., & Gruber, P. R. (2003). Applications of life cycle assessment to NatureWorks polylactide (PLA) production. Polymer Degradation and Stability, 80(3), 403–419.

    Article  Google Scholar 

  18. Lardon, L., Hélias, A., Sialve, B., Steyer, J. P., & Bernard, O. (2009). Life-cycle assessment of biodiesel production from microalgae.

    Google Scholar 

  19. Rathi, R., Khanduja, D., & Sharma, S. K. (2015). Six Sigma project selection using Fuzzy TOPSIS decision making approach. Management Science Letters, 5(5), 447–456.

    Article  Google Scholar 

  20. 20. Rathi, R., Khanduja, D., & Sharma, S. K. (2017). A fuzzy-MADM based approach for prioritizing Six Sigma projects in the Indian auto sector. International Journal of Management Science and Engineering Management, 12(2), 133–140. https://doi.org/10.1080/17509653.2016.1154486.

  21. Ahbe, S., Braunschweig, A., & Müller-Wenk, R. (1990). Methodology for ecobalances based on ecological optimization. BUWAL (SAFEL) Environment Series, (133)

    Google Scholar 

  22. Guinee, J. B., Heijungs, R., Huppes, G., Zamagni, A., Masoni, P., Buonamici, R., & Rydberg, T. (2010). Life cycle assessment: past, present, and future.

    Google Scholar 

  23. Bjorn, A., Owsianiak, M., Molin, C., & Hauschild, M. Z. (2018). LCA history. In Life cycle assessment (pp. 17–30). Cham: Springer.

    Google Scholar 

  24. Goedkoop, M. (2000). The Eco-indicator 99 A damage oriented method for Life Cycle Impact Assessment-Methodology report, Pre consultants. http://www.pre-sustainability.com/content/reports.

  25. Heijungs, R., Guinée, J. B., Huppes, G., Lankreijer, R. M., Udo de Haes, H. A., Wegener Sleeswijk, A., & De Goede, H. P. (1992). Environmental life cycle assessment of products: guide and backgrounds (part 1).

    Google Scholar 

  26. Smith, H. (1969). The cumulative energy requirements of some final products of the chemical industry. In Transactions of the World Energy Conference (Vol. 18, No. Section E).

    Google Scholar 

  27. Kaswan, M. S., & Rathi, R. (2020). Investigating the enablers associated with implementation of Green Lean Six Sigma in manufacturing sector using Best Worst Method. Clean Technologies and Environmental Policy, 1-12.

    Google Scholar 

  28. Kounina, A., Margni, M., Bayart, J. B., Boulay, A. M., Berger, M., Bulle, C., et al. (2013). Review of methods addressing freshwater use in life cycle inventory and impact assessment. The International Journal of Life Cycle Assessment, 18(3), 707–721.

    Article  Google Scholar 

  29. Bjørn, A., Diamond, M., Owsianiak, M., Verzat, B., & Hauschild, M. Z. (2015). Strengthening the link between life cycle assessment and indicators for absolute sustainability to support development within planetary boundaries.

    Google Scholar 

  30. Goedkoop, M., Oele, M., Leijting, J., Ponsioen, T., & Meijer, E. (2016). Introduction to LCA with SimaPro. PRé.

    Google Scholar 

  31. Fava, J. A., & Society of Environmental Toxicology and Chemistry. (1991). A technical framework for life cycle assessment: Workshop report; August 18–23

    Google Scholar 

  32. Kloepffer, W. (2008). Life cycle sustainability assessment of products. The International Journal of Life Cycle Assessment, 13(2), 89.

    Article  Google Scholar 

  33. Hauschild, M. Z., Goedkoop, M., Guinée, J., Heijungs, R., Huijbregts, M., Jolliet, O., et al. (2013). Identifying best existing practice for characterization modeling in life cycle impact assessment. The International Journal of Life Cycle Assessment, 18(3), 683–697.

    Article  Google Scholar 

  34. Gong, J., Darling, S. B., & You, F. (2015). Perovskite photovoltaics: Life-cycle assessment of energy and environmental impacts. Energy & Environmental Science, 8(7), 1953–1968.

    Article  Google Scholar 

  35. Artz, J., Müller, T. E., Thenert, K., Kleinekorte, J., Meys, R., Sternberg, A., et al. (2017). Sustainable conversion of carbon dioxide: An integrated review of catalysis and life cycle assessment. Chemical Reviews, 118(2), 434–504.

    Article  Google Scholar 

  36. Cremiato, R., Mastellone, M. L., Tagliaferri, C., Zaccariello, L., & Lettieri, P. (2018). Environmental impact of municipal solid waste management using Life Cycle Assessment: The effect of anaerobic digestion, materials recovery and secondary fuels production. Renewable Energy, 124, 180–188.

    Article  Google Scholar 

  37. Morales, M., Collet, P., Lardon, L., Hélias, A., Steyer, J. P., & Bernard, O. (2019). Life-cycle assessment of microalgal-based biofuel. Biofuels from Algae, 507–550.

    Google Scholar 

  38. Reap, J., Roman, F., Duncan, S., & Bras, B. (2008). A survey of unresolved problems in life cycle assessment. The International Journal of Life Cycle Assessment, 13(5), 374.

    Article  Google Scholar 

  39. Clayton, T., & Radcliffe, N. (2018). Sustainability: A systems approach. Routledge.

    Google Scholar 

  40. Pell, R., Wall, F., Yan, X., Li, J., & Zeng, X. (2019). Mineral processing simulation based-environmental life cycle assessment for rare earth project development: A case study on the Songwe Hill project.

    Google Scholar 

  41. Khoshnevisan, B., Tsapekos, P., Alvarado-Morales, M., Rafiee, S., Tabatabaei, M., & Angelidaki, I. (2018). Life cycle assessment of different strategies for energy and nutrient recovery from source sorted organic fraction of household waste. Journal of Cleaner Production, 180, 360–374.

    Article  Google Scholar 

  42. Petti, L., Serreli, M., & Di Cesare, S. (2018). Systematic literature review in social life cycle assessment. The International Journal of Life Cycle Assessment, 23(3), 422–431.

    Article  Google Scholar 

  43. Rathi, R., Khanduja, D., & Sharma, S. K. (2015). Synergy of fuzzy AHP and Six Sigma for capacity waste management in Indian automotive industry. Decision Science Letters, 4(3), 441–452.

    Article  Google Scholar 

  44. Kaswan, M., Rathi, R., M. S., & Singh, M. (2019). Just in time elements extraction and prioritization for health care unit using decision making approach. International Journal of Quality & Reliability Management. https://doi.org/10.1108/ijqrm-08-2018-0208.

  45. Buonocore, E., Mellino, S., De Angelis, G., Liu, G., & Ulgiati, S. (2018). Life cycle assessment indicators of urban wastewater and sewage sludge treatment. Ecol Ind, 94, 13–23.

    Article  Google Scholar 

  46. Pomponi, F., & Lenzen, M. (2018). Hybrid life cycle assessment (LCA) will likely yield more accurate results than process-based LCA. Journal of Cleaner Production, 176, 210–215.

    Article  Google Scholar 

  47. Rathi, R., & Khanduja, D. (2019). Identification and Prioritization Lean Six Sigma Barriers in MSMEs. In Journal of Physics: Conference Series, (Vol. 1240, no. 1, p. 012062). IOP Publishing.

    Google Scholar 

  48. Saad, M. H., Nazzal, M. A., & Darras, B. M. (2019). A general framework for sustainability assessment of manufacturing processes. Ecological Indicators, 97, 211–224.

    Article  Google Scholar 

  49. Nilsson, J. (2017). Challenges with using a more Sustainable Business Model: A case study of a battery tool manufacturer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Rathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaswan, M.S., Rathi, R., Khanduja, D., Singh, M. (2020). Life Cycle Assessment Framework for Sustainable Development in Manufacturing Environment. In: Krolczyk, G., Prakash, C., Singh, S., Davim, J. (eds) Advances in Intelligent Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4565-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4565-8_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4564-1

  • Online ISBN: 978-981-15-4565-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics