Skip to main content

Preserving Location Privacy Using Blockchain

  • Conference paper
  • First Online:
IC-BCT 2019

Part of the book series: Blockchain Technologies ((BT))

  • 731 Accesses

Abstract

With the advancement of technology and enhanced techniques of the global positioning system, the use of location-based services has significantly increased in the last decade. With the increase in the use of these services, there is also a rise in concern for the preservation of location privacy. There have been some cases where location data was disclosed, which even led to some serious crimes. Preservation of location privacy becomes a must in these situations. There are various techniques for preserving location privacy. Some use an anonymizer in between location-based services (LBS) and user, while other uses a distributed architecture for preserving location privacy. In this paper, a blockchain-based decentralized architecture for preserving location privacy is proposed. Earlier users had to trust either the anonymizer or the LBS for retrieving the query results, but with this proposed solution, advancement toward zero trust model would be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beresford AR, Stajano F (2003) Location privacy in pervasive computing. IEEE Pervasive Comput 1:46–55

    Article  Google Scholar 

  2. Chow CY, Mokbel MF, Liu X (2006) A peer-to-peer spatial cloaking algorithm for anonymous location-based service. In: Proceedings of the 14th annual ACM international symposium on advances in geographic information systems. ACM, pp 171–178

    Google Scholar 

  3. Gedik B, Liu L (2005) Location privacy in mobile systems: a personalized anonymization model. In: Proceedings of the 25th IEEE international conference on distributed computing systems (ICDCS 2005). IEEE, pp 620–629

    Google Scholar 

  4. Gruteser M, Grunwald D (2003) Anonymous usage of location-based services through spatial and temporal cloaking. In: Proceedings of the 1st international conference on mobile systems, applications and services. ACM, pp 31–42

    Google Scholar 

  5. Gupta R, Rao UP (2017) Achieving location privacy through cast in location based services. J Commun Networks 19(3):239–249

    Article  Google Scholar 

  6. Gupta R, Rao UP (2017) An exploration to location based service and its privacy preserving techniques: a survey. Wirel Pers Commun 96(2):1973–2007

    Article  Google Scholar 

  7. Gupta R, Rao UP (2017) A hybrid location privacy solution for mobile lbs. Mob Inform Syst

    Google Scholar 

  8. Gupta R, Rao UP (2018) Privacy protection through hiding location coordinates using geometric transformation techniques in location-based services enabled mobiles. In: Cyber security: proceedings of CSI 2015. Springer, Berlin, pp 1–10

    Google Scholar 

  9. Kalnis P, Ghinita G, Mouratidis K, Papadias D (2007) Preventing location-based identity inference in anonymous spatial queries. IEEE Trans Knowl Data Eng 19(12):1719–1733

    Article  Google Scholar 

  10. Kanza Y, Safra E (2018) Cryptotransport: blockchain-powered ride hailing while preserving privacy, pseudonymity and trust. In: Proceedings of the 26th ACM SIGSPATIAL international conference on advances in geographic information systems. ACM, pp 540–543

    Google Scholar 

  11. Kido H, Yanagisawa Y, Satoh T (2005) An anonymous communication technique using dummies for location-based services. In: Proceedings of international conference on pervasive services (ICPS’05). IEEE, pp 88–97

    Google Scholar 

  12. Miura K, Sato F (2013) Evaluation of a hybrid method of user location anonymization. In: Proceedings of eighth international conference on broadband and wireless computing, communication and applications (BWCCA). IEEE, pp 191–198

    Google Scholar 

  13. Mokbel MF, Chow CY, Aref WG (2006) The new casper: query processing for location services without compromising privacy. In: Proceedings of the 32nd international conference on very large data bases. VLDB Endowment, pp 763–774

    Google Scholar 

  14. Yang M, Zhu T, Liang K, Zhou W, Deng RH (2019) A blockchain-based location privacy-preserving crowdsensing system. Fut Gener Comput Syst 94:408–418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishipal Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yadav, R., Nimkarde, S., Jat, G., Rao, U.P., Parmar, D. (2020). Preserving Location Privacy Using Blockchain. In: Patel, D., et al. IC-BCT 2019. Blockchain Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-4542-9_1

Download citation

Publish with us

Policies and ethics