Skip to main content

Scrutinizing the Prospect of Cerbera manghas Seed and Its De-oiled Cake for a Fuel: Physicochemical Properties and Thermal Behavior

  • Conference paper
  • First Online:
Proceedings of the 6th International Conference and Exhibition on Sustainable Energy and Advanced Materials

Abstract

Biomass is a renewable fuel derived from biological substances such as crops, waste, animals, and residues, which has been ranked as the third-largest source of energy in the world. One of the biological materials that potential as biomass fuel from the perspective of the abundance is Cerbera manghas, which is a mangrove plant, poisonous, and therefore it does not compete with the needs of the foods. This research aims to study the physicochemical properties and thermal characteristics of Cerbera manghas seed and its de-oiled cake. The seed of Cerbera manghas samples is dried in an oven at 80 °C for 4 h. The de-oiled cake is obtained by the pressing of the seed at 33.81 N/m2 to release its oil content. The higher heating values (HHVs) of the seed and de-oiled cake are examined by using an adiabatic bomb calorimeter. Physical properties are evaluated by proximate analysis test to comprehend the respective moisture (M), volatile matter (VM), fixed carbon (FC), and ash (A) content. The chemical properties, especially C, H, O, N, and S, are analyzed by the ultimate analysis test. The thermal behavior of the seed and de-oiled cake are studied by a thermal analyzer. It can be reported that the seed and de-oiled cake are dominated by volatile matters, which are 91.41 and 84.93%, respectively, and they have HHVs of 32.46 MJ/kg for seed and 27.95 MJ/kg for de-oiled cake. Their chemical properties are dominated by 78.01% carbon for the seed and 67.34% carbon for the de-oiled cake. From the thermal test under the inert atmosphere, it was known that they have the temperature of active pyrolysis zone at around 150 until 500 °C, and resulted in relatively low residuals at the end of the pyrolysis process those are 8.22% for the seed and 15.43% for the de-oiled cake. These overall results strengthened the potential of Cerbera manghas seed and its de-oiled cake being the fuel feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. KESDM (2016) Data Inventory Emisi GRK Sektor Energi. Kementerian Energi dan Sumber Daya Mineral, Jakarta (2016)

    Google Scholar 

  2. Iman G, Handoko T (2011) Pengolahan Buah Bintaro sebagai Sumber Bioetanol dan Karbon Aktif 1–5

    Google Scholar 

  3. Wang T, Zhai Y, Zhu Y, Li C, Zeng G (2018) A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew Sustain Energy Rev 90:223–247. https://doi.org/10.1016/j.rser.2018.03.071

    Article  Google Scholar 

  4. Gillespie GD, Everard CD, Fagan CC, McDonnell KP (2013) Prediction of quality parameters of biomass pellets from proximate and ultimate analysis. Fuel 111:771–777. https://doi.org/10.1016/j.fuel.2013.05.002

    Article  Google Scholar 

  5. Chen C, Ma X, He Y (2012) Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. Bioresour Technol 117:264–273. https://doi.org/10.1016/j.biortech.2012.04.077

    Article  Google Scholar 

  6. Sukarni, Sudjito, Hamidi N, Yanuhar U, Wardana ING (2014) Potential and properties of marine microalgae Nannochloropsis oculata as biomass fuel feedstock. Int J Energy Environ Eng 5:279–290. https://doi.org/10.1007/s40095-014-0138-9

    Article  Google Scholar 

  7. Suryani I, Yusuf Permana MU, Hatta Dahlan M (2012) Pembuatan Briket Arang Dari Campuran Buah Bintaro Dan Tempurung Kelapa Menggunakan Perekat Amilum 18:24–29

    Google Scholar 

  8. Sukarni S, Zakaria Y, Sumarli S, Wulandari R, Ayu Permanasari A, Suhermanto M (2019) Physical and chemical properties of water hyacinth (Eichhornia crassipes) as a sustainable biofuel feedstock. In: IOP conference series: materials science and engineering. IOP Publishing, pp 012070. https://doi.org/10.1088/1757-899X/515/1/012070

    Article  Google Scholar 

  9. Qian H, Zhu W, Fan S, Liu C, Lu X, Wang Z, Huang D, Chen W (2017) Prediction models for chemical exergy of biomass on dry basis from ultimate analysis using available electron concepts. Energy 131:251–258. https://doi.org/10.1016/j.energy.2017.05.037

    Article  Google Scholar 

  10. Yin C-Y (2011) Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 90:1128–1132. https://doi.org/10.1016/j.fuel.2010.11.031

    Article  Google Scholar 

  11. Sukarni S (2016) Exploring the potential of municipal solid waste (MSW) as solid fuel for energy generation: case study in the Malang City, Indonesia. In: AIP conference proceedings. p 020003. https://doi.org/10.1063/1.4965733

  12. Marcilla A, Catalá L, García-Quesada JC, Valdés FJ, Hernández MR (2013) A review of thermochemical conversion of microalgae. Renew Sustain Energy Rev 27:11–19. https://doi.org/10.1016/j.rser.2013.06.032

    Article  Google Scholar 

  13. Ozyuguran A, Akturk A, Yaman S (2018) Optimal use of condensed parameters of ultimate analysis to predict the calorific value of biomass. Fuel 214:640–646. https://doi.org/10.1016/j.fuel.2017.10.082

    Article  Google Scholar 

  14. Gil MV, García R, Rubiera F, Pevida C (2019) Assessing the influence of biomass properties on the gasification process using multivariate data analysis. Energy Convers Manag 184:649–660. https://doi.org/10.1016/j.enconman.2019.01.093

    Article  Google Scholar 

  15. Chee A, Lim R, Lai B, Chin F, Abbas Z, Ling K (2016) Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method. Procedia Eng 148:1247–1251. https://doi.org/10.1016/j.proeng.2016.06.486

    Article  Google Scholar 

  16. Sukarni, Sudjito, Hamidi, N., Yanuhar, U., Wardana, I.N.G.: Thermogravimetric kinetic analysis of Nannochloropsis oculata combustion in air atmosphere. Front Energy 9:125–133. https://doi.org/10.1007/s11708-015-0346-x

    Article  Google Scholar 

  17. Sheng C, Azevedo JLTÃ (2005) Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 28:499–507. https://doi.org/10.1016/j.biombioe.2004.11.008

    Article  Google Scholar 

  18. Sukarni S, Sumarli S, Nauri IM, Purnami P, Al Mufid A, Yanuhar U (2018) Exploring the prospect of marine microalgae Isochrysis galbana as sustainable solid biofuel feedstock. J Appl Res Technol 16:53–66

    Article  Google Scholar 

  19. Singh YD, Mahanta P, Bora U (2017) Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renew Energy 103:490–500. https://doi.org/10.1016/j.renene.2016.11.039

    Article  Google Scholar 

  20. Açikalin K (2012) Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis. J Therm Anal Calorim 109:227–235. https://doi.org/10.1007/s10973-011-1714-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sukarni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muzayyin, M., Sukarni, S., Wulandari, R. (2020). Scrutinizing the Prospect of Cerbera manghas Seed and Its De-oiled Cake for a Fuel: Physicochemical Properties and Thermal Behavior. In: Sabino, U., Imaduddin, F., Prabowo, A. (eds) Proceedings of the 6th International Conference and Exhibition on Sustainable Energy and Advanced Materials. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4481-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4481-1_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4480-4

  • Online ISBN: 978-981-15-4481-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics