Skip to main content

PIP–HoGu, an Artificial Assembly with Cooperative DNA Recognition

  • Chapter
  • First Online:
Artificial Assemblies with Cooperative DNA Recognition

Part of the book series: Springer Theses ((Springer Theses))

  • 145 Accesses

Abstract

Cooperation between pairs of transcription factors (TFs) has been widely demonstrated to play a pivotal role in the spatiotemporal regulation of gene expression, but blocking cooperative TF pair–DNA interactions synergistically has been challenging. To achieve this, we designed programmable DNA binder pyrrole-imidazole polyamides conjugated to host–guest assemblies (PIP–HoGu) to mimic the cooperation between natural TF pairs. By incorporating cyclodextrin (Cyd)–adamantane (Ada), we synthesized Ada1 (PIP1-Ada) and Cyd1 (PIP2-Cyd), which were evaluated using Tm, EMSA, competitive, and SPR assays and molecular dynamics studies. The results consistently demonstrated that the PIP–HoGu system formed stable noncovalent cooperative complexes, thereby meeting key criteria for mimicking a TF pair. The system also had a longer recognition sequence (two-PIP binding length plus gap distance), favorable sequence selectivity, higher binding affinity, and in particular, a flexible gap distance (0–5 base pairs [bp]). For example, Ada1Cyd1 showed thermal stability of 7.2 °C and a minimum free energy of interaction of −2.32 kcal mol−1 with a targeting length of 14 bp. Furthermore, cell-based evaluation validated the capability of PIP–HoGu to exhibit potent cooperative inhibitory effects on gene expression under physiological conditions by disrupting TF pair–DNA function. In conclusion, the modular design of PIP–HoGu defines a general framework for mimicking naturally occurring cooperative TF pair–DNA interactions that offers a promising strategy for applications in the precise manipulation of cell fate.

This chapter is reprinted and modified with permission from “Z. YU, C. Guo, Y. Wei, K. Hashiya, T. Bando, H. Sugiyama, Pip-HoGu: An Artificial Assembly with Cooperative DNA Recognition Capable of Mimicking Transcription Factor Pairs, J. Am. Chem. Soc., 140 (2018) 2426–2429”. Copyright 2018 American Chemical Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu Z, Guo C, Wei Y et al (2018) Pip-HoGu: an artificial assembly with cooperative DNA recognition capable of mimicking transcription factor pairs. J Am Chem Soc 140:2426–2429

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  3. Srivastava D, DeWitt N (2016) In vivo cellular reprogramming: the next generation. Cell 166:1386–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morgunova E, Taipale J (2017) Structural perspective of cooperative transcription factor binding. Curr Opin Struct Biol 47:1–8

    Article  CAS  PubMed  Google Scholar 

  5. Stampfel G, Kazmar T, Frank O et al (2015) Transcriptional regulators form diverse groups with context-dependent regulatory functions. Nature 528:147–151

    Article  CAS  PubMed  Google Scholar 

  6. Gottesfeld JM, Neely L, Trauger JW et al (1997) Regulation of gene expression by small molecules. Nature 387:202–205

    Article  CAS  PubMed  Google Scholar 

  7. Dragulescu-Andrasi A, Rapireddy S, He G et al (2006) Cell-permeable peptide nucleic acid designed to bind to the 5′-untranslated region of E-cadherin transcript induces potent and sequence-specific antisense effects. J Am Chem Soc 128:16104–16112

    Article  CAS  PubMed  Google Scholar 

  8. Taniguchi J, Pandian GN, Hidaka T et al (2017) A synthetic DNA-binding inhibitor of SOX2 guides human induced pluripotent stem cells to differentiate into mesoderm. Nucleic Acids Res 45:9219–9228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jolma A, Yin Y, Nitta KR et al (2015) DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature 527:384–388

    Article  CAS  PubMed  Google Scholar 

  10. Aksoy I, Jauch R, Chen J et al (2013) Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm. EMBO J 32:938–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kamachi Y, Uchikawa M, Tanouchi A et al (2001) Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development. Genes Dev 15:1272–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dervan PB (2001) Molecular recognition of DNA by small molecules. Bioorg Med Chem 9:2215–2235

    Article  CAS  PubMed  Google Scholar 

  13. Yu Z, Pandian GN, Hidaka T et al (2019) Therapeutic gene regulation using pyrrole-imidazole polyamides. Adv Drug Deliv Rev 147:66–85

    Article  CAS  PubMed  Google Scholar 

  14. Kurmis AA, Yang F, Welch TR et al (2017) A pyrrole-imidazole polyamide is active against enzalutamide-resistant prostate cancer. Cancer Res 77:2207–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Edelson BS, Best TP, Olenyuk B et al (2004) Influence of structural variation on nuclear localization of DNA-binding polyamide-fluorophore conjugates. Nucleic Acids Res 32:2802–2818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kawamoto Y, Sasaki A, Chandran A et al (2016) Targeting 24 bp within telomere repeat sequences with tandem tetramer pyrrole-imidazole polyamide probes. J Am Chem Soc 138:14100–14107

    Article  CAS  PubMed  Google Scholar 

  17. Deplancke B, Alpern D, Gardeux V (2016) The genetics of transcription factor DNA binding variation. Cell 166:538–554

    Article  CAS  PubMed  Google Scholar 

  18. Yu G, Jie K, Huang F (2015) Supramolecular amphiphiles based on host-guest molecular recognition motifs. Chem Rev 115:7240–7303

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez J, Mosquera J, Garcia-Fandino R et al (2016) A designed DNA binding motif that recognizes extended sites and spans two adjacent major grooves. Chem Sci 7:3298–3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Azuma Y, Imanishi M, Yoshimura T et al (2009) Cobalt(II)-responsive DNA binding of a GCN4-bZIP protein containing cysteine residues functionalized with iminodiacetic acid. Angew Chem Int Ed Engl 121:6985–6988

    Article  Google Scholar 

  21. Ihara T, Uemura A, Futamura A et al (2009) Cooperative DNA probing using a β-cyclodextrin−DNA conjugate and a nucleobase-specific fluorescent ligand. J Am Chem Soc 131:1386–1387

    Article  CAS  PubMed  Google Scholar 

  22. Machida T, Novoa A, Gillon É et al (2017) Dynamic cooperative glycan assembly blocks the binding of bacterial lectins to epithelial cells. Angew Chem Int Ed Engl 56:6762–6766

    Article  CAS  PubMed  Google Scholar 

  23. Zhou X, Su X, Pathak P et al (2017) Host-guest tethered DNA transducer: ATP fueled release of a protein inhibitor from cucurbit[7]uril. J Am Chem Soc 139:13916–13921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morii T, Tanaka T, Sato S-I et al (2002) A general strategy to determine a target DNA sequence of a short peptide: application to a d-peptide. J Am Chem Soc 124:180–181

    Article  CAS  PubMed  Google Scholar 

  25. Lai J, Shah BP, Garfunkel E et al (2013) Versatile fluorescence resonance energy transfer-based mesoporous silica nanoparticles for real-time monitoring of drug release. ACS Nano 7:2741–2750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ueno M, Murakami A, Makino K et al (1993) Arranging quaternary structure of peptides by cyclodextrin-guest inclusion complex: sequence-specific DNA binding by a peptide dimer with artificial dimerization module. J Am Chem Soc 115:12575–12576

    Article  CAS  Google Scholar 

  27. Aizawa Y, Sugiura Y, Ueno M et al (1999) Stability of the dimerization domain effects the cooperative DNA binding of short peptides. Biochemistry 38:4008–4017

    Article  CAS  PubMed  Google Scholar 

  28. Blanco JB, Dodero VI, Vázquez ME et al (2006) Sequence-specific DNA binding by noncovalent peptide-tripyrrole conjugates. Angew Chem Int Ed Engl 45:8210–8214

    Article  CAS  PubMed  Google Scholar 

  29. Livengood JA, Fechter EJ, Dervan PB et al (2004) Paradoxical effects of DNA binding polyamides on HTLV-1 transcription. Front Biosci 9:3058–3067

    Article  CAS  PubMed  Google Scholar 

  30. Matsuoka M, Jeang K-T (2007) Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer 7:270–280

    Article  CAS  PubMed  Google Scholar 

  31. Guo C, Kawamoto Y, Asamitsu S et al (2015) Rational design of specific binding hairpin Py-Im polyamides targeting human telomere sequences. Bioorg Med Chem 23:855–860

    Article  CAS  PubMed  Google Scholar 

  32. Ihara T, Takeda Y, Jyo A (2001) Metal ion-directed cooperative triple helix formation of glutamic acid−oligonucleotide conjugate. J Am Chem Soc 123:1772–1773

    Article  CAS  PubMed  Google Scholar 

  33. Panjkovich A, Melo F (2005) Comparison of different melting temperature calculation methods for short DNA sequences. Bioinformatics 21:711–722

    Article  CAS  PubMed  Google Scholar 

  34. Yu Z, Taniguchi J, Wei Y et al (2017) Antiproliferative and apoptotic activities of sequence-specific histone acetyltransferase inhibitors. Eur J Med Chem 138:320–327

    Article  CAS  PubMed  Google Scholar 

  35. Kameshima W, Ishizuka T, Minoshima M et al (2013) Conjugation of peptide nucleic acid with a pyrrole/imidazole polyamide to specifically recognize and cleave DNA. Angew Chem Int Ed Engl 52:13681–13684

    Article  CAS  PubMed  Google Scholar 

  36. Hossain MA, Hamasaki K, Takahashi K et al (2001) Guest-induced diminishment in fluorescence quenching and molecule sensing ability of a novel cyclodextrin−peptide conjugate. J Am Chem Soc 123:7435–7436

    Article  CAS  PubMed  Google Scholar 

  37. Heddi B, Cheong VV, Martadinata H et al (2015) Insights into G-quadruplex specific recognition by the DEAH-box helicase RHAU: solution structure of a peptide–quadruplex complex. Proc Natl Acad Sci U S A 112:9608–9613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sánchez MI, Mosquera J, Vázquez ME et al (2014) Reversible supramolecular assembly at specific DNA sites: Nickel-promoted bivalent DNA binding with designed peptide and bipyridyl–bis(benzamidine) components. Angew Chem Int Ed Engl 53:9917–9921

    Article  PubMed  CAS  Google Scholar 

  39. Distefano MD, Dervan PB (1993) Energetics of cooperative binding of oligonucleotides with discrete dimerization domains to DNA by triple helix formation. Proc Natl Acad Sci U S A 90:1179–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ackers GK, Johnson AD, Shea MA (1982) Quantitative model for gene regulation by lambda phage repressor. Proc Natl Acad Sci U S A 79:1129–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Asamitsu S, Li Y, Bando T et al (2016) Ligand-mediated G-quadruplex induction in a double-stranded DNA context by cyclic imidazole/lysine polyamide. ChemBioChem 17:1317–1322

    Article  CAS  PubMed  Google Scholar 

  42. Sun H-L, Zhang Y-M, Chen Y et al (2016) Polyanionic cyclodextrin induced supramolecular nanoparticle. Sci Rep 6:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Harada A, Takashima Y, Nakahata M (2014) Supramolecular polymeric materials via cyclodextrin-guest interactions. Acc Chem Res 47:2128–2140

    Article  CAS  PubMed  Google Scholar 

  44. Boyer M, Poujol N, Margeat E et al (2000) Quantitative characterization of the interaction between purified human estrogen receptor α and DNA using fluorescence anisotropy. Nucleic Acids Res 28:2494–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wilson VS, Bobseine K, Gray JLE (2004) Development and characterization of a cell line that stably expresses an estrogen-responsive luciferase reporter for the detection of estrogen receptor agonist and antagonists. Toxicol Sci 81:69–77

    Article  CAS  PubMed  Google Scholar 

  46. Nickols NG, Szablowski JO, Hargrove AE et al (2013) Activity of a Py-Im polyamide targeted to the estrogen response element. Mol Cancer Ther 12:675–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Summerton JE (2005) Endo-porter: a novel reagent for safe, effective delivery of substances into cells. Ann N Y Acad Sci 1058:62–75

    Article  CAS  PubMed  Google Scholar 

  48. Yu Z, Ai M, Samanta SK et al (2020) A synthetic transcription factor pair mimic for precise recruitment of an epigenetic modifier to the targeted DNA locus. Chem Commun 56:2296–2299

    Google Scholar 

  49. Yu Z, Hsieh WC, Asamitsu S et al (2018) Orthogonal gammaPNA dimerization domains empower DNA binders with cooperativity and versatility mimicking that of transcription factor pairs. Chem Eur J 24:14183–14188

    Article  CAS  PubMed  Google Scholar 

  50. Tang W, Ng S-C (2007) Synthesis of cationic single-isomer cyclodextrins for the chiral separation of amino acids and anionic pharmaceuticals. Nat Protocols 2:3195–3200

    Article  CAS  PubMed  Google Scholar 

  51. Liu Y-Y, Fan X-D, Gao L (2003) Synthesis and characterization of β-cyclodextrin based functional monomers and its copolymers with N-isopropylacrylamide. Macromol Biosci 3:715–719

    Article  CAS  Google Scholar 

  52. Manna A, Rapireddy S, Sureshkumar G et al (2015) Synthesis of optically pure γPNA monomers: a comparative study. Tetrahedron 71:3507–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moretti R, Donato LJ, Brezinski ML et al (2008) Targeted chemical wedges reveal the role of allosteric DNA modulation in protein-DNA assembly. ACS Chem Biol 3:220–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chou H-M, Chao H-R, Lin C et al (2016) An improved estrogenic activity reporter gene assay (T47D-KBluc) for detecting estrogenic activity in wastewater and drinking water. Toxicol Environ Chem 98:376–384

    Article  CAS  Google Scholar 

  55. Schagat T, Paguio A, Kopish K (2007) Normalizing genetic reporter assays: approaches and considerations for increasing consistency and statistical significance. Cell Notes 17:9–12

    Google Scholar 

  56. Guo C, Asamitsu S, Kashiwazaki G et al (2017) DNA interstrand crosslinks by H-pin polyamide (S)-seco-CBI conjugates. ChemBioChem 18:166–170

    Article  CAS  PubMed  Google Scholar 

  57. Chenoweth DM, Dervan PB (2010) Structural basis for cyclic Py-Im polyamide allosteric inhibition of nuclear receptor binding. J Am Chem Soc 132:14521–14529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. van den Berg B, Prathyusha Bhamidimarri S, Dahyabhai Prajapati J et al (2015) Outer-membrane translocation of bulky small molecules by passive diffusion. Proc Natl Acad Sci U S A 112:E2991–E2999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Dunn AR, Hays AM, Goodin DB et al (2002) Fluorescent probes for cytochrome p450 structural characterization and inhibitor screening. J Am Chem Soc 124:10254–10255

    Article  CAS  PubMed  Google Scholar 

  60. Laughlin-Toth S, Carter EK, Ivanov I et al (2017) DNA microstructure influences selective binding of small molecules designed to target mixed-site DNA sequences. Nucleic Acids Res 45:1297–1306

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

YU, Z. (2020). PIP–HoGu, an Artificial Assembly with Cooperative DNA Recognition. In: Artificial Assemblies with Cooperative DNA Recognition. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-4423-1_2

Download citation

Publish with us

Policies and ethics