Background and Literature Survey

Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


Due to the rapid growth of maritime business data, data centers and backbone networks need to deal with a large number of complex network traffic. Resource-intensive tasks such as high-definition video playback, multimedia applications, and online games have been growing in recent years. These requirements not only increase the burden of bandwidth demand but also increase the energy consumption of the ship terminal network. At the same time, great changes have been raised in the characteristics and requirements of current maritime services, from the initial optimal requirements of point-to-point communication to support a variety of service quality. Exploring and deploying a maritime communication network with more omnidirectional coverage, higher reliability, higher speed, and lower cost will have a great influence on the development of the maritime industry and security in the future. Therefore, the introduction of brand new network technologies (such as software defined network, mobile edge computing, intelligence algorithms) into the field of maritime communications provides new ideas for solving challenges faced by maritime communications, but many basic research issues has not been thoroughly solved. We divide the existing works in the relevant literature into three categories of research problems.


  1. 1.
    Chen, T., Matinmikko, M., Chen, X., Zhou, X., Ahokangas, P.: Software defined mobile networks: concept, survey, and research directions. IEEE Commun. Mag. 53(11), 126–133, November 2015Google Scholar
  2. 2.
    Kreutz, D., Ramos, F.M.V., Verłssimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015). JanCrossRefGoogle Scholar
  3. 3.
    Liang, C., Yu, F.R.: Wireless network virtualization: a survey, some research issues and challenges. IEEE Commun. Surv Tutor. 17(1), 358–380, Firstquarter 2015Google Scholar
  4. 4.
    Nguyen, V., Brunstrom, A., Grinnemo, K., Taheri, J.: SDN/NFV-based mobile packet core network architectures: a survey. IEEE Commun. Surv. Tutor. 19(3), 1567–1602, thirdquarter 2017Google Scholar
  5. 5.
    Schulz-Zander, J., Mayer, C., Ciobotaru, B., Lisicki, R., Schmid, S., Feldmann, A.: Unified programmability of virtualized network functions and software-defined wireless networks. IEEE Trans. Netw. Serv. Manage. 14(4), 1046–1060 (2017). DecCrossRefGoogle Scholar
  6. 6.
    Chaudhary, R., Aujla, G.S., Kumar, N., Rodrigues, J.J.P.C.: Optimized big data management across multi-cloud data centers: software-defined-network-based analysis. IEEE Commun. Mag. 56(2), 118–126 (2018). FebCrossRefGoogle Scholar
  7. 7.
    Abbas, N., Zhang, Y., Taherkordi, A., Skeie, T.: Mobile edge computing: a survey. IEEE Internet Things J. 5(1), 450–465 (2018). FebCrossRefGoogle Scholar
  8. 8.
    Yang, P., Zhang, N., Bi, Y., Yu, L., Shen, X.S.: Catalyzing cloud-fog interoperation in 5G wireless networks: an SDN approach. IEEE Netw. 31(5), 14–20 (2017)CrossRefGoogle Scholar
  9. 9.
    Zhang, Y., Yao, J., Guan, H.: Intelligent cloud resource management with deep reinforcement learning. IEEE Cloud Comput. 4(6), 60–69 (2017)CrossRefGoogle Scholar
  10. 10.
    Cheng, M., Li, J., Nazarian, S.: DRL-cloud: deep reinforcement learning-based resource provisioning and task scheduling for cloud service providers. In: Proceedings of 23rd ASP-DAC Conference, Jeju, pp. 129–134 (2018)Google Scholar
  11. 11.
    Zhang, N., Zhang, S., Yang, P., Alhussein, O., Zhuang, W., Shen, X.S.: Software defined space-air-ground integrated vehicular networks: challenges and solutions. IEEE Commun. Mag. 55(7), 101–109 (2017). JulyCrossRefGoogle Scholar
  12. 12.
    Huang, W., Ding, L., Meng, D., Hwang, J., Xu, Y., Zhang, W.: QoE-based resource allocation for heterogeneous multi-radio communication in software-defined vehicle networks. IEEE Access 6, 3387–3399 (2018)CrossRefGoogle Scholar
  13. 13.
    Lai, C., Zhou, H., Cheng, N., Shen, X.S.: Secure group communications in vehicular networks: a software-defined network-enabled architecture and solution. IEEE Veh. Technol. Mag. 12(4), 40–49 (2017). DecCrossRefGoogle Scholar
  14. 14.
    Alasadi, E., Al-Raweshidy, H.S.: SSED: servers under software-defined network architectures to eliminate discovery messages. IEEE/ACM Trans. Netw. 26(1), 104–117 (2018). FebCrossRefGoogle Scholar
  15. 15.
    Tang, F., Mao, B., Fadlullah, Z.M., Kato, N.: On a novel deep-learning-based intelligent partially overlapping channel assignment in SDN-IoT. IEEE Commun. Mag. 56(9), 80–86 (2018). SeptCrossRefGoogle Scholar
  16. 16.
    Fadlullah, Z.M., et al.: State-of-the-art deep learning: evolving machine intelligence toward tomorrows intelligent network traffic control systems. IEEE Commun. Surv. Tutor. 19(4), 2432–2455, Fourthquarter 2017Google Scholar
  17. 17.
    Huang, X., Yuan, T., Qiao, G., Ren, Y.: Deep reinforcement learning for multimedia traffic control in software defined networking. IEEE Netw. 32(6), 35–41 (2018)CrossRefGoogle Scholar
  18. 18.
    Jindal, A., Aujla, G.S., Kumar, N., Chaudhary, R., Obaidat, M.S., You, I.: SeDaTiVe: SDN-enabled deep learning architecture for network traffic control in vehicular cyber-physical systems. IEEE Netw. 32(6), 66–73 (2018)CrossRefGoogle Scholar
  19. 19.
    Liu, W., Zhang, J., Liang, Z., Peng, L., Cai, J.: Content popularity prediction and caching for ICN: a deep learning approach with SDN. IEEE Access 6, 5075–5089 (2018)CrossRefGoogle Scholar
  20. 20.
    He, Y., Zhao, N., Yin, H.: Integrated networking, caching, and computing for connected vehicles: a deep reinforcement learning approach. IEEE Trans. Veh. Technol. 67(1), 44–55 (2018). JanCrossRefGoogle Scholar
  21. 21.
    He, Y., Yu, F.R., Zhao, N., Leung, V.C.M., Yin, H.: Software-defined networks with mobile edge computing and caching for smart cities: a big data deep reinforcement learning approach. IEEE Commun. Mag. 55(12), 31–37 (2017). DecCrossRefGoogle Scholar
  22. 22.
    Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Netw. 24(5), 2795–2808 (2016). OctoberCrossRefGoogle Scholar
  23. 23.
    Zhang, D., Chen, Z., Awad, M.K., Zhang, N., Zhou, H., Shen, X.S.: Utility-optimal resource management and allocation algorithm for energy harvesting cognitive radio sensor networks. IEEE J. Sel. Areas Commun. 34(12), 3552–3565 (2016). DecCrossRefGoogle Scholar
  24. 24.
    Zhang, J., Xia, W., Yan, F., Shen, L.: Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing. IEEE Access 6, 19324–19337 (2018)CrossRefGoogle Scholar
  25. 25.
    Mao, Y., Zhang, J., Letaief, K.B.: Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE J, Sel. Areas Commun. 34(12), 3590–3605 (2016). DecCrossRefGoogle Scholar
  26. 26.
    You, C., Huang, K., Chae, H., Kim, B.H.: Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans. Wirel. Commun. 16(3), 1397–1411 (2017). MarchCrossRefGoogle Scholar
  27. 27.
    Mao, Y., Zhang, J., Letaief, K.B.: Joint task offloading scheduling and transmit power allocation for mobile-edge computing systems. In: 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, pp. 1–6 (2017)Google Scholar
  28. 28.
    Zhang, K., et al.: Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE Access 4, 5896–5907 (2016)CrossRefGoogle Scholar
  29. 29.
    Le, H.Q., Al-Shatri, H., Klein, A.: Efficient resource allocation in mobile-edge computation offloading: completion time minimization. In: IEEE International Symposium on Information Theory (ISIT), Aachen, vol. 2017, pp. 2513–2517 (2017)Google Scholar
  30. 30.
    Wang, F., Xu, J., Wang, X., Cui, S.: Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Trans. Wirel. Commun. 17(3), 1784–1797 (2018). MarchCrossRefGoogle Scholar
  31. 31.
    Zhang, D., Shen, R., Ren, J., Zhang, Y.: Delay-optimal proactive service framework for block-stream as a service. IEEE Wirel. Commun. Lett. 7(4), 598–601 (2018). AugCrossRefGoogle Scholar
  32. 32.
    Wang, C., Liang, C., Yu, F.R., Chen, Q., Tang, L.: Computation offloading and resource allocation in wireless cellular networks with mobile edge computing. IEEE Trans. Wirel. Commun. 16(8), 4924–4938 (2017). AugCrossRefGoogle Scholar
  33. 33.
    Yang, L., Cao, J., Cheng, H., Ji, Y.: Multi-user computation partitioning for latency sensitive mobile cloud applications. IEEE Trans. Comput. 64(8), 2253–2266 (2015). AugMathSciNetCrossRefGoogle Scholar
  34. 34.
    Lee, S., Zhang, R.: Distributed wireless power transfer with energy feedback. IEEE Trans. Signal Process. 65(7), 1685–1699 (2017). AprMathSciNetCrossRefGoogle Scholar
  35. 35.
    Ren, J., Guo, H., Xu, C., Zhang, Y.: Serving at the edge: a scalable iot architecture based on transparent computing. IEEE Netw. 31(5), 96–105 (2017)CrossRefGoogle Scholar
  36. 36.
    Zhang, D., Qiao, Y., She, L., Shen, R., Ren, J., Zhang, Y.: Two time-scale resource management for green internet of things networks. IEEE Internet of Things J. 6(1), 545–556 (2019). FebCrossRefGoogle Scholar
  37. 37.
    Byun, H.: A method of indirect configuration propagation with estimation of system state in networked multi-agent dynamic systems. IEEE Commun. Lett. 22(9), 1766–1769 (2018). SeptCrossRefGoogle Scholar
  38. 38.
    Hoai, D.K., Van Phuong, N.: Anomaly color detection on UAV images for search and rescue works. In: 2017 9th International Conference on Knowledge and Systems Engineering (KSE), Hue, pp. 287–291 (2017)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Electrical Engineering and IntelligentizationDongguan University of TechnologyDongguanChina
  2. 2.Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations