Skip to main content

Background and Literature Survey

  • Chapter
  • First Online:
  • 235 Accesses

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

Abstract

Due to the rapid growth of maritime business data, data centers and backbone networks need to deal with a large number of complex network traffic. Resource-intensive tasks such as high-definition video playback, multimedia applications, and online games have been growing in recent years. These requirements not only increase the burden of bandwidth demand but also increase the energy consumption of the ship terminal network. At the same time, great changes have been raised in the characteristics and requirements of current maritime services, from the initial optimal requirements of point-to-point communication to support a variety of service quality. Exploring and deploying a maritime communication network with more omnidirectional coverage, higher reliability, higher speed, and lower cost will have a great influence on the development of the maritime industry and security in the future. Therefore, the introduction of brand new network technologies (such as software defined network, mobile edge computing, intelligence algorithms) into the field of maritime communications provides new ideas for solving challenges faced by maritime communications, but many basic research issues has not been thoroughly solved. We divide the existing works in the relevant literature into three categories of research problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen, T., Matinmikko, M., Chen, X., Zhou, X., Ahokangas, P.: Software defined mobile networks: concept, survey, and research directions. IEEE Commun. Mag. 53(11), 126–133, November 2015

    Google Scholar 

  2. Kreutz, D., Ramos, F.M.V., Verłssimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015). Jan

    Article  Google Scholar 

  3. Liang, C., Yu, F.R.: Wireless network virtualization: a survey, some research issues and challenges. IEEE Commun. Surv Tutor. 17(1), 358–380, Firstquarter 2015

    Google Scholar 

  4. Nguyen, V., Brunstrom, A., Grinnemo, K., Taheri, J.: SDN/NFV-based mobile packet core network architectures: a survey. IEEE Commun. Surv. Tutor. 19(3), 1567–1602, thirdquarter 2017

    Google Scholar 

  5. Schulz-Zander, J., Mayer, C., Ciobotaru, B., Lisicki, R., Schmid, S., Feldmann, A.: Unified programmability of virtualized network functions and software-defined wireless networks. IEEE Trans. Netw. Serv. Manage. 14(4), 1046–1060 (2017). Dec

    Article  Google Scholar 

  6. Chaudhary, R., Aujla, G.S., Kumar, N., Rodrigues, J.J.P.C.: Optimized big data management across multi-cloud data centers: software-defined-network-based analysis. IEEE Commun. Mag. 56(2), 118–126 (2018). Feb

    Article  Google Scholar 

  7. Abbas, N., Zhang, Y., Taherkordi, A., Skeie, T.: Mobile edge computing: a survey. IEEE Internet Things J. 5(1), 450–465 (2018). Feb

    Article  Google Scholar 

  8. Yang, P., Zhang, N., Bi, Y., Yu, L., Shen, X.S.: Catalyzing cloud-fog interoperation in 5G wireless networks: an SDN approach. IEEE Netw. 31(5), 14–20 (2017)

    Article  Google Scholar 

  9. Zhang, Y., Yao, J., Guan, H.: Intelligent cloud resource management with deep reinforcement learning. IEEE Cloud Comput. 4(6), 60–69 (2017)

    Article  Google Scholar 

  10. Cheng, M., Li, J., Nazarian, S.: DRL-cloud: deep reinforcement learning-based resource provisioning and task scheduling for cloud service providers. In: Proceedings of 23rd ASP-DAC Conference, Jeju, pp. 129–134 (2018)

    Google Scholar 

  11. Zhang, N., Zhang, S., Yang, P., Alhussein, O., Zhuang, W., Shen, X.S.: Software defined space-air-ground integrated vehicular networks: challenges and solutions. IEEE Commun. Mag. 55(7), 101–109 (2017). July

    Article  Google Scholar 

  12. Huang, W., Ding, L., Meng, D., Hwang, J., Xu, Y., Zhang, W.: QoE-based resource allocation for heterogeneous multi-radio communication in software-defined vehicle networks. IEEE Access 6, 3387–3399 (2018)

    Article  Google Scholar 

  13. Lai, C., Zhou, H., Cheng, N., Shen, X.S.: Secure group communications in vehicular networks: a software-defined network-enabled architecture and solution. IEEE Veh. Technol. Mag. 12(4), 40–49 (2017). Dec

    Article  Google Scholar 

  14. Alasadi, E., Al-Raweshidy, H.S.: SSED: servers under software-defined network architectures to eliminate discovery messages. IEEE/ACM Trans. Netw. 26(1), 104–117 (2018). Feb

    Article  Google Scholar 

  15. Tang, F., Mao, B., Fadlullah, Z.M., Kato, N.: On a novel deep-learning-based intelligent partially overlapping channel assignment in SDN-IoT. IEEE Commun. Mag. 56(9), 80–86 (2018). Sept

    Article  Google Scholar 

  16. Fadlullah, Z.M., et al.: State-of-the-art deep learning: evolving machine intelligence toward tomorrows intelligent network traffic control systems. IEEE Commun. Surv. Tutor. 19(4), 2432–2455, Fourthquarter 2017

    Google Scholar 

  17. Huang, X., Yuan, T., Qiao, G., Ren, Y.: Deep reinforcement learning for multimedia traffic control in software defined networking. IEEE Netw. 32(6), 35–41 (2018)

    Article  Google Scholar 

  18. Jindal, A., Aujla, G.S., Kumar, N., Chaudhary, R., Obaidat, M.S., You, I.: SeDaTiVe: SDN-enabled deep learning architecture for network traffic control in vehicular cyber-physical systems. IEEE Netw. 32(6), 66–73 (2018)

    Article  Google Scholar 

  19. Liu, W., Zhang, J., Liang, Z., Peng, L., Cai, J.: Content popularity prediction and caching for ICN: a deep learning approach with SDN. IEEE Access 6, 5075–5089 (2018)

    Article  Google Scholar 

  20. He, Y., Zhao, N., Yin, H.: Integrated networking, caching, and computing for connected vehicles: a deep reinforcement learning approach. IEEE Trans. Veh. Technol. 67(1), 44–55 (2018). Jan

    Article  Google Scholar 

  21. He, Y., Yu, F.R., Zhao, N., Leung, V.C.M., Yin, H.: Software-defined networks with mobile edge computing and caching for smart cities: a big data deep reinforcement learning approach. IEEE Commun. Mag. 55(12), 31–37 (2017). Dec

    Article  Google Scholar 

  22. Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Netw. 24(5), 2795–2808 (2016). October

    Article  Google Scholar 

  23. Zhang, D., Chen, Z., Awad, M.K., Zhang, N., Zhou, H., Shen, X.S.: Utility-optimal resource management and allocation algorithm for energy harvesting cognitive radio sensor networks. IEEE J. Sel. Areas Commun. 34(12), 3552–3565 (2016). Dec

    Article  Google Scholar 

  24. Zhang, J., Xia, W., Yan, F., Shen, L.: Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing. IEEE Access 6, 19324–19337 (2018)

    Article  Google Scholar 

  25. Mao, Y., Zhang, J., Letaief, K.B.: Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE J, Sel. Areas Commun. 34(12), 3590–3605 (2016). Dec

    Article  Google Scholar 

  26. You, C., Huang, K., Chae, H., Kim, B.H.: Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans. Wirel. Commun. 16(3), 1397–1411 (2017). March

    Article  Google Scholar 

  27. Mao, Y., Zhang, J., Letaief, K.B.: Joint task offloading scheduling and transmit power allocation for mobile-edge computing systems. In: 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, pp. 1–6 (2017)

    Google Scholar 

  28. Zhang, K., et al.: Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE Access 4, 5896–5907 (2016)

    Article  Google Scholar 

  29. Le, H.Q., Al-Shatri, H., Klein, A.: Efficient resource allocation in mobile-edge computation offloading: completion time minimization. In: IEEE International Symposium on Information Theory (ISIT), Aachen, vol. 2017, pp. 2513–2517 (2017)

    Google Scholar 

  30. Wang, F., Xu, J., Wang, X., Cui, S.: Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Trans. Wirel. Commun. 17(3), 1784–1797 (2018). March

    Article  Google Scholar 

  31. Zhang, D., Shen, R., Ren, J., Zhang, Y.: Delay-optimal proactive service framework for block-stream as a service. IEEE Wirel. Commun. Lett. 7(4), 598–601 (2018). Aug

    Article  Google Scholar 

  32. Wang, C., Liang, C., Yu, F.R., Chen, Q., Tang, L.: Computation offloading and resource allocation in wireless cellular networks with mobile edge computing. IEEE Trans. Wirel. Commun. 16(8), 4924–4938 (2017). Aug

    Article  Google Scholar 

  33. Yang, L., Cao, J., Cheng, H., Ji, Y.: Multi-user computation partitioning for latency sensitive mobile cloud applications. IEEE Trans. Comput. 64(8), 2253–2266 (2015). Aug

    Article  MathSciNet  Google Scholar 

  34. Lee, S., Zhang, R.: Distributed wireless power transfer with energy feedback. IEEE Trans. Signal Process. 65(7), 1685–1699 (2017). Apr

    Article  MathSciNet  Google Scholar 

  35. Ren, J., Guo, H., Xu, C., Zhang, Y.: Serving at the edge: a scalable iot architecture based on transparent computing. IEEE Netw. 31(5), 96–105 (2017)

    Article  Google Scholar 

  36. Zhang, D., Qiao, Y., She, L., Shen, R., Ren, J., Zhang, Y.: Two time-scale resource management for green internet of things networks. IEEE Internet of Things J. 6(1), 545–556 (2019). Feb

    Article  Google Scholar 

  37. Byun, H.: A method of indirect configuration propagation with estimation of system state in networked multi-agent dynamic systems. IEEE Commun. Lett. 22(9), 1766–1769 (2018). Sept

    Article  Google Scholar 

  38. Hoai, D.K., Van Phuong, N.: Anomaly color detection on UAV images for search and rescue works. In: 2017 9th International Conference on Knowledge and Systems Engineering (KSE), Hue, pp. 287–291 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingting Yang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, T., Shen, X. (2020). Background and Literature Survey. In: Mission-Critical Application Driven Intelligent Maritime Networks. SpringerBriefs in Computer Science. Springer, Singapore. https://doi.org/10.1007/978-981-15-4412-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4412-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4411-8

  • Online ISBN: 978-981-15-4412-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics