Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 324 Accesses

Abstract

Solid materials can be divided into conductors, semiconductors, and insulators according to the respective conductive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen FX (2006) Physical properties of materials [M]. China Machine Press

    Google Scholar 

  2. Wu L (2009) Physics [M]. Beijing Jiaotong University Press

    Google Scholar 

  3. Zhang LY, Yao X (1991) Dielectric physics [M]. Xi’an Jiaotong University Press

    Google Scholar 

  4. Lian CB (2004) Electromagnetics [M]. Higher Education Press

    Google Scholar 

  5. Zhang FX, Wang LK (2001) Modern Piezoelectric [M]. Science Press

    Google Scholar 

  6. Jin L, Li F, Zhang S (2014) Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc 97:1–27

    Article  CAS  Google Scholar 

  7. Xu YH (1978) Ferroelectric and piezoelectric materials [M]. Science Press

    Google Scholar 

  8. Busch G (1987) How I discovered the ferroelectric properties of KH2PO4. Ferroelectrics 71:43–47

    Article  CAS  Google Scholar 

  9. Zhou GD (2000) Structure and physical properties: application of chemical principles [M]. Higher Education Press

    Google Scholar 

  10. Mueller H (1940) Properties of Rochelle salt IV. Phys Rev 58:805–811

    Article  CAS  Google Scholar 

  11. Shi D (2002) Functional thin films and functional materials: new concepts and technologies. Springer, New York

    Google Scholar 

  12. Haertling GH (1991) Ferroelectric thin films for electronic applications. J Vac Sci Technol A 9:414–420

    Article  CAS  Google Scholar 

  13. Anderson PW (1956) Ordering and antiferromagnetism in ferrites. Phys Rev 102:1008

    Article  CAS  Google Scholar 

  14. Cochran W (1959) Crystal stability and the theory of ferroelectricity. Phys Rev Lett 3:412

    Article  CAS  Google Scholar 

  15. Bowen CR, Kim HA, Weaver PM et al (2014) Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ Sci 7:25–44

    Article  CAS  Google Scholar 

  16. Lang SB (2005) Pyroelectricity: from ancient curiosity to modern imaging tool. Phys Today 58:31–36

    Article  CAS  Google Scholar 

  17. Bowen CR, Taylor J, LeBoulbar E et al (2014) Pyroelectric materials and devices for energy harvesting applications. Energy Environ Sci 7:3836–3856

    Article  Google Scholar 

  18. Zhang T (2012) Piezoelectric film and device preparation technology (Yadianbomo Cailiao Yu Qijian Zhibei Jishu) [M]. Northwestern Polytechnical University Press

    Google Scholar 

  19. Mason WP (1981) Piezoelectricity, its history and applications. J Acoust Soc Am 70:1561–1566

    Article  CAS  Google Scholar 

  20. Wang CL, Li JC, Zhao ML (2009) Physics of piezoelectrics and ferroelectrics [M]. Science Press

    Google Scholar 

  21. Zhang FQ, Li YX (2014) Recent progress on bismuth layer structured ferroelectrics. J Inorg Mater 29:449–460

    Google Scholar 

  22. Choi SW, Shrout TR, Jang SJ et al (1989) Dielectric and pyroelectric properties in the Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Ferroelectrics 100:29–38

    Article  CAS  Google Scholar 

  23. Noheda B, Cox D, Shirane G (2002) Phase diagram of the ferroelectric relaxor (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3. Phys Rev B 66:054104–054113

    Article  CAS  Google Scholar 

  24. Dai ZG, Dong SM, Yin ZH et al (2005) Progress in the growth, properties and application of PMN-PT crystal. J Synth Cryst 34:1018–1055

    Google Scholar 

  25. Kumar P, Thakur OP, Prakash C et al (2005) Ferroelectric properties of bulk and thin films of PMNT system. Phys B 357:241–247

    Article  CAS  Google Scholar 

  26. Guo Y, Luo H, Ling D et al (2003) The phase transition sequence and the location of the morphotropic phase boundary region in (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3 single crystal. J Phys-Condens Mat 15:L77–L82

    Article  CAS  Google Scholar 

  27. Shen DZ (2002) Research progress in ferroelectric crystal KNbO3. J Synth Cryst 31:192–200

    Google Scholar 

  28. Yi XJ (2004) Preparation and properties of lead-free ferroelectric single crystals. Doctoral thesis, Shan Dong University

    Google Scholar 

  29. Luo H, Xu G, Xu H et al (2000) Compositional homogeneity and electrical properties of lead magnesium niobate titanate single crystals grown by a modified Bridgman technique. Jpn J Appl Phys 39:5581–5585

    Article  CAS  Google Scholar 

  30. Shrout TR, Chang ZP, Kim N et al (1990) Dielectric behavior of single crystals near the (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 morphotropic phase boundary. Ferroelect Lett 12:63–69

    Article  CAS  Google Scholar 

  31. Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82:1804–1811

    Article  CAS  Google Scholar 

  32. Dong M, Ye ZG (2000) High temperature solution growth and characterization of the piezo/ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3[PMNT] single crystals. J Cryst Growth 209:81–90

    Article  CAS  Google Scholar 

  33. Sun EW, Cao WW (2014) Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications. Prog Mater Sci 65:124–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Service RE (1997) Shape-changing crystals get shiftier. Science 275:1878

    Article  CAS  Google Scholar 

  35. Liu G (2013) Piezoelectric activity and energy dissipation behavior of relaxor based lead titanate crystals. Doctoral thesis, Harbin Institute of Technology

    Google Scholar 

  36. Li X, Zhang R, Huang N et al (2009) Surface acoustic wave propagation in Y and Z-cut 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystals. J Appl Phys 106:054110

    Article  PubMed Central  CAS  Google Scholar 

  37. Wan XM (2005) Electro-optic properties and structure of ferroelectric PMN-PT single crystals. Doctoral thesis, Shanghai Institute of Ceramics, Chinese Academy of Sciences

    Google Scholar 

  38. Yan ZL, Yao X, Zhang LY (2008) Fitting and analyzing the dielectric spectra of Pb(Mg1/3Nb2/3)O3-xPbTiO3 ceramics and single crystals. J Electroceram 21:275–278

    Article  CAS  Google Scholar 

  39. Zeng HR, Yu HF, Chu RQ et al (2004) Domain orientation imaging of PMN-PT single crystals by vertical and lateral piezoresponse force microscopy. J Cryst Growth 267:194–198

    Article  CAS  Google Scholar 

  40. Zhang S, Shrout TR (2010) Relaxor-PT single crystals: observations and developments. IEEE T Ultrason Ferr 57:2138–2146

    Article  Google Scholar 

  41. Luo NN, Li YY, Xia ZG et al (2012) Progress in lead-based ferroelectric and antiferroelectric single crystals: composition modification, crystal growth and properties. CrystEngComm 14:4547–4556

    Article  CAS  Google Scholar 

  42. Hosono Y, Harada K, Yamashita Y (2000) Growth, electric and thermal properties of lead scandium niobate-lead magnesium niobate-lead titanate ternary single crystals. Jpn J Appl Phys 39:5589–5592

    Article  CAS  Google Scholar 

  43. He C, Li XZ, Wang ZJ et al (2010) Preparation and characterization of new Pb(Yb1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary piezo-/ferroelectric crystals. Chem Mater 22:5588–5592

    Article  CAS  Google Scholar 

  44. Amin A, Lee HY, Kelly B (2007) High transition temperature lead magnesium niobate-lead zirconate titanate single crystals. Appl Phys Lett 90:242912–242914

    Article  CAS  Google Scholar 

  45. Karaki T, Nakamoto M, Sumiyoshi Y et al (2003) Top-seeded solution growth of Pb[(In1/2Nb1/2), Pb(Mg1/3Nb2/3), Ti]O3 single crystals. Jpn J Appl Phys 42:6059–6061

    Article  CAS  Google Scholar 

  46. Zhang SJ, Luo J, Hackenberger W et al (2008) Characterization of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)-PbTiO3 ferroelectric crystal with enhanced phase transition temperatures. J Appl Phys 104:064106–064110

    Article  PubMed Central  CAS  Google Scholar 

  47. Xia ZG (2008) MPB composition design and crystal growth of PMN-PT based relaxor ferroelectric materials with high TR-T. Doctoral thesis, Tsinghua University

    Google Scholar 

  48. Feng R (1999) Ultrasonics handbook. Nanjing University Press

    Google Scholar 

  49. Zhang SJ, Li F, Jiang XN et al (2015) Advantages and challenges of relaxor PbTiO3 ferroelectric crystals for electroacoustic transducers - a review. Prog Mater Sci 68:1–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peng J (2005) Novel piezoelectric single crystals PMN-PT and their applications in medical ultrasonic transducers. Doctoral thesis, China University of Geosciences

    Google Scholar 

  51. Chen Y, Lam KH, Zhou D et al (2013) High frequency PMN-PT single crystal focusing transducer fabricated by a mechanical dimpling technique. Ultrasonics 53:345–349

    Article  CAS  PubMed  Google Scholar 

  52. Zipparo MJ, Oakley CG (2001) Single crystal PMN-PT and PZN-PT ultrasonic imaging arrays. In: 12th IEEE international symposium on applications of ferroelectrics, vol 1, pp 111–114

    Google Scholar 

  53. Rhim SM, Jung H, Kim S et al (2002) A 2.6 MHz phased array ultrasonic probe using 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystal grown by the Bridgman method. IEEE Ultrason Symp Proc 2:1143–1148

    Google Scholar 

  54. Chen J, Panda R (2005) Review: commercialization of piezoelectric single crystals for medical imaging applications. IEEE Ultrason Symp Proc 1:235–240

    Google Scholar 

  55. Zhou D, Dai JY, Chan HLW et al (2010) Endoscopic ultrasound radial arrays fabricated with high performance piezocrystal and piezocomposite. IEEE Int Ultrason Symp Proc 2068–2071

    Google Scholar 

  56. Mo XP (2006) Innovations for sonar: new technology and designs for underwater acoustic transducers. Physics 35:414–419

    Google Scholar 

  57. Xu JY, Jin M (2008) New relaxor ferroelectric crystals-growth, performance and applications [M]. Chemical Industry Press

    Google Scholar 

  58. Sherlock NP (2010) Relaxor-PT single crystals for broad bandwidth, high power sonar projectors. PA: The Pennsylvania State University

    Google Scholar 

  59. Ye ZG (2008) Handbook of advanced dielectric, piezoelectric and ferroelectric materials—synthesis, characterization and applications. Woodhead, England

    Book  Google Scholar 

  60. Meng H, Yu HP, Luo HS et al (2004) PMNT and its application in underwater acoustic transducers. Acoust Electron Eng 1:22–26

    Google Scholar 

  61. Lau ST, Lam KH, Chan HLW et al (2004) Ferroelectric lead magnesium niobate-lead titanate single crystals for ultrasonic hydrophone applications. Mater Sci Eng B 111:25–30

    Article  CAS  Google Scholar 

  62. Xu TB, Tolliver L, Jiang X et al (2013) A single crystal lead magnesium niobate-lead titanate multilayer-stacked cryogenic flextensional actuator. Appl Phys Lett 102:042906

    Article  CAS  Google Scholar 

  63. Damjanovic D, Newnham RE (1992) Electrostrictive and piezoelectric materials for actuator applications. J Intell Mater Syst Struct 3:190–208

    Article  Google Scholar 

  64. Wilkie WK, Inman DJ, Lloyd JM et al (2006) Anisotropic laminar piezocomposite actuator incorporating machined PMN-PT single-crystal fibers. J Intell Mater Syst Struct 17:15–28

    Article  Google Scholar 

  65. Kim KC, Kim YS, Kim HJ et al (2006) Finite element analysis of piezoelectric actuator with PMN-PT single crystals for nanopositioning. Curr Appl Phys 6:1064–1067

    Article  Google Scholar 

  66. Woody SC, Smith ST, Jiang X et al (2005) Performance of single-crystal Pb(Mg1/3Nb2/3)-32%PbTiO3 stacked actuators with application to adaptive structures. Rev Sci Instrum 76:075112

    Article  CAS  Google Scholar 

  67. Jiang XN, Cook W, Hackenberger WS (2009) Cryogenic piezoelectric actuators. Proc SPIE 7439:74390Z

    Article  Google Scholar 

  68. Zhang SJ, Li F (2012) High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J Appl Phys 111:031301

    Article  CAS  Google Scholar 

  69. Lam KH, Chan HLW, Luo HS et al (2005) Piezoelectrically actuated ejector using PMN-PT single crystal. Sens Actuat A 121:197–202

    Article  CAS  Google Scholar 

  70. Huang YT, Lin ZY (2004) Progress in research on piezoelectric transformers. Electron Compon Mater 23:7–10

    Google Scholar 

  71. Hu JH, Li HL, Chan HLW et al (2001) A ring-shaped piezoelectric transformer operating in the third symmetric extensional vibration mode. Sens Actuat A 88:79–86

    Article  CAS  Google Scholar 

  72. Wang F, Lin SY (2008) Research and development of piezoelectric ceramic transformer. Electron Compon Device Appl 10:75–77

    Google Scholar 

  73. Li LT, Deng W, Chai J et al (1990) Lead zirconate titanate ceramics and monolithic piezoelectric transformer of low firing temperature. Ferroelectrics 101:193–200

    Article  CAS  Google Scholar 

  74. Kozielski L, Lisińska-Czekaj A, Czekaj D (2007) Graded PZT ceramics for piezoelectric transformers. Prog Solid State Chem 35:521–530

    Article  CAS  Google Scholar 

  75. Smith GL, Pulskamp JS, Sanchez LM et al (2012) PZT-based piezoelectric MEMS technology. J Am Ceram Soc 95:1777–1792

    Article  CAS  Google Scholar 

  76. Fuda Y, Kumasaka K, Katsuno M et al (1997) Piezoelectric transformer for cold cathode fluorescent lamp inverter. Jpn J Appl Phys 36:3050–3052

    Article  CAS  Google Scholar 

  77. Wang F, Shi W, Luo H (2010) Step-down piezoelectric transformer fabricated with (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystal. Rev Sci Instrum 81:043904

    Article  PubMed  CAS  Google Scholar 

  78. Zhuang Y, Ural SO, Gosain R et al (2009) High power piezoelectric transformers with Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Appl Phys Express 2:121402

    Article  CAS  Google Scholar 

  79. Wang F, Shi W, Tang Y et al (2010) A longitudinal (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single-crystal piezoelectric transformer. Appl Phys A 100:1231–1236

    Article  CAS  Google Scholar 

  80. Leung CM, Or SW, Wang F et al (2011) Dual-resonance converse magnetoelectric and voltage step-up effects in laminated composite of long-type 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 piezoelectric single-crystal transformer and Tb0.3Dy0.7Fe1.92 magnetostrictive alloy bars. J Appl Phys 109:104103

    Google Scholar 

  81. Wang F, Jia Y, Wu J et al (2008) Piezoelectric/electroluminescent composites for low voltage input flat-panel display devices. Appl Phys A 90:729–731

    Article  CAS  Google Scholar 

  82. Xu SY, Yeh Y-W, Poirier G et al (2013) Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device. Nano Lett 13:2393–2398

    Article  CAS  PubMed  Google Scholar 

  83. Ren B, Zhang Y, Zhang Q et al (2010) Energy harvesting using multilayer structure based on 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal. Appl Phys A 100:125–128

    Article  CAS  Google Scholar 

  84. Ren B, Or SW, Zhang Y et al (2010) Piezoelectric energy harvesting using shear mode 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal cantilever. Appl Phys Lett 96:083502

    Google Scholar 

  85. Hwang GT, Park H, Lee J-H et al (2014) Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv Mater 26:4880–4887

    Article  CAS  PubMed  Google Scholar 

  86. Park JH, Hwang GT, Kim S et al (2017) Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester. Adv Mater 29:1603473

    Article  CAS  Google Scholar 

  87. Herklotz A, Plumhof JD, Rastelli A et al (2010) Electrical characterization of PMN-28%PT (001) crystals used as thin-film substrates. J Appl Phys 108:094101

    Article  CAS  Google Scholar 

  88. Bokov AA, Ye ZG (2002) Giant electrostriction and stretched exponential electromechanical relaxation in 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 crystals. J Appl Phys 91:6656–6661

    Article  CAS  Google Scholar 

  89. Zheng RK, Wang Y, Chan HL et al (2007) Determination of the strain dependence of resistance in La0.7Sr0.3MnO3/PMN-PT using the converse piezoelectric effect. Phys Rev B 75:12102

    Google Scholar 

  90. Thiele C, Dörr K, Bilani O et al (2007) Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT (001) (A = Sr, Ca). Phys Rev B 75:054408

    Article  CAS  Google Scholar 

  91. Zhang W, Yang M, Liang X et al (2015) Piezostrain-enhanced photovoltaic effects in BiFeO3/La0.7Sr0.3MnO3/PMN-PT heterostructures. Nano Energy 18:315–324

    Article  CAS  Google Scholar 

  92. Hui YY, Liu X, Jie W et al (2013) Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 7:7126–7131

    Article  CAS  PubMed  Google Scholar 

  93. Zhang Y, Gao G, Chan HLW et al (2012) Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures. Adv Mater 24:1729–1735

    Article  PubMed  CAS  Google Scholar 

  94. Bai G, Zhang Y, Hao J (2014) Tuning of near-infrared luminescence of SrTiO3: Ni2+ thin films grown on piezoelectric PMN-PT via strain engineering. Sci Rep 4:5724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang JX, Ding F, Zallo E et al (2013) A nanomembrane-based wavelength-tunable high-speed single-photon-emitting diode. Nano Lett 13:5808–5813

    Article  CAS  PubMed  Google Scholar 

  96. Frank M, Moon KS, Kassegne S (2010) A PMMA coated PMN-PT single crystal resonator for sensing chemical agents. Smart Mater Struct 19:035015

    Article  CAS  Google Scholar 

  97. Edwards G, Chan HLW, Batten A et al (2006) PMN-PT single-crystal transducer for non-destructive evaluation. Sens Actuat A 132:434–440

    Article  CAS  Google Scholar 

  98. Zhao XY (2004) Dielectric, piezoelectric and pyroelectric properties of relaxor based ferroelectric PMN-PT single crystals. Doctoral thesis, Shanghai Institute of Ceramics, Chinese Academy of Sciences

    Google Scholar 

  99. Feng ZY, Zhao XY, Luo HS (2006) Large pyroelectric effect in relaxor-based ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. J Am Ceram Soc 89:3437–3440

    Article  CAS  Google Scholar 

  100. Li L, Luo HS, Liu LH et al (2013) Research on new pyroelectric crystal materials and infrared detectors. Infrared 34:12–15

    Google Scholar 

  101. Fang B, Qian K, Miao F et al (2012) Structural, optical and improved electrical properties of relaxor-based single crystals after poling. J Am Ceram Soc 95:1949–1954

    Article  CAS  Google Scholar 

  102. Luo HS, Zhao XY, Tang YX et al The PMN-PT pyroelectric single crystals and application. Patent CN 1837420A

    Google Scholar 

  103. Chen YS, Zhou PY, Feng YQ (1995) Physical effects and applications [M]. Tianjing University Press

    Google Scholar 

  104. Chynoweth AG (1956) Dynamic method for measuring the pyroelectric effect with special reference to barium titanate. J Appl Phys 27:78–84

    Article  CAS  Google Scholar 

  105. Tang YX (2007) Novel pyroelectric materials and their applications in infrared devices. Doctoral thesis, Shanghai Institute of Ceramics, Chinese Academy of Sciences

    Google Scholar 

  106. Zhao XY, Wu X, Liu LH et al (2011) Pyroelectric performances of relaxor-based ferroelectric single crystals and related infrared detectors. Phys Status Solidi A 208:1061–1067

    Article  CAS  Google Scholar 

  107. Shao X, Ding J, Ma X et al (2012) Design and thermal analysis of electrically calibrated pyroelectric detector. Infrared Phys Techn 55:45–48

    Article  CAS  Google Scholar 

  108. Xu Q, Zhao XY, Li XB et al (2015) Novel electrode layout for relaxor single crystal pyroelectric detectors with enhanced responsivity and specific detectivity. Sens Actuat A 234:82–86

    Article  CAS  Google Scholar 

  109. Wang J, Jing Y, Jing W et al (2011) Signal readout for pyroelectric detector based on relaxor ferroelectric single crystals. Phys Status Solidi A 208:1078–1083

    Article  CAS  Google Scholar 

  110. Li L, Zhao XY, Li XB et al (2014) Scale effects of low-dimensional relaxor ferroelectric single crystals and their application in novel pyroelectric infrared detectors. Adv Mater 26:2580–2585

    Article  CAS  PubMed  Google Scholar 

  111. Hsu KF, Loo S, Guo F et al (2004) Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303(5659):818–821

    Article  CAS  PubMed  Google Scholar 

  112. Boukai AI, Bunimovich Y, Tahir-Kheli J et al (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451:168–171

    Article  CAS  PubMed  Google Scholar 

  113. Minnich AJ, Dresselhaus MS, Ren ZF et al (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2:66–479

    Article  CAS  Google Scholar 

  114. Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457–1461

    Article  CAS  PubMed  Google Scholar 

  115. Cuadras A, Gasulla M, Ferrari V (2010) Thermal energy harvesting through pyroelectricity. Sens Actuat A 158:132–139

    Article  CAS  Google Scholar 

  116. Lee JH, Lee KY, Gupta MK et al (2014) Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator. Adv Mater 26:765–769

    Article  CAS  PubMed  Google Scholar 

  117. Navid A, Pilon L (2011) Pyroelectric energy harvesting using Olsen cycles in purified and porous poly (vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films. Smart Mater Struct 20:025012

    Article  CAS  Google Scholar 

  118. Ravindran SKT, Huesgen T, Kroener M et al (2011) A self-sustaining micro thermomechanic-pyroelectric generator. Appl Phys Lett 99:104102

    Article  CAS  Google Scholar 

  119. Kandilian R, Navid A, Pilon L (2011) The pyroelectric energy harvesting capabilities of PMN-PT near the morphotropic phase boundary. Smart Mater Struct 20:055020

    Article  CAS  Google Scholar 

  120. Scott JF (2004) Ferroelectric memories [M]. Tsinghua University Press

    Google Scholar 

  121. Wang Y, Hu J, Lin Y et al (2010) Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater 2:61–68

    Article  Google Scholar 

  122. Nan CW (2015) Research progress and future directions of multiferroic materials. Sci Sin Tech 45:339–357

    Article  Google Scholar 

  123. Liu M, Obi O, Lou J et al (2009) Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv Funct Mater 19:1826–1831

    Article  Google Scholar 

  124. Zhu QX, Yang MM, Zheng M et al (2015) Ultrahigh tunability of room temperature electronic transport and ferromagnetism in dilute magnetic semiconductor and PMN-PT single-crystal-based field effect transistors via electric charge mediation. Adv Funct Mater 25:1111–1119

    Article  CAS  Google Scholar 

  125. Chen L, Zhao WY, Wang J et al (2016) Semiconductor/piezoelectrics hybrid heterostructures with highly effective gate-tunable electrotransport and magnetic behaviors. ACS Appl Mater Interfaces 8:26932–26937

    Article  CAS  PubMed  Google Scholar 

  126. Jie W, Hui YY, Chan NY et al (2013) Ferroelectric polarization effects on the transport properties of graphene/PMN-PT field effect transistors. J Phys Chem C 117:13747–13752

    Article  CAS  Google Scholar 

  127. Park N, Kang H, Park J et al (2015) Ferroelectric single-crystal gated graphene/hexagonal-BN/ferroelectric field-effect transistor. ACS Nano 9:10729–10736

    Article  CAS  PubMed  Google Scholar 

  128. Tian H (2015) Graphene based novel micro/nano devices. Doctoral thesis, Tsinghua University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajing Fang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Tsinghua University Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fang, H. (2020). Introduction. In: Novel Devices Based on Relaxor Ferroelectric PMN-PT Single Crystals. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-4312-8_1

Download citation

Publish with us

Policies and ethics