Skip to main content

Transfer Learning Coupled Convolution Neural Networks in Detecting Retinal Diseases Using OCT Images

  • Chapter
  • First Online:
Intelligent Computing: Image Processing Based Applications

Abstract

Optical coherence tomography (OCT) in diagnosing retinal images is an extensive technique for detecting the wide-ranging diseases related to retina. In this paper, the authors have considered three diseases, viz. diabetic macular edema (DME), choroidal neovascularization (CNV), and drusen. These diseases are classified using six different convolutional neural network (CNN) architectures. The purpose is to compare among the six different CNNs in terms of accuracy, precision, F- measure, and recall. The architectures used are coupled with or without transfer learning, and a comparison has been drawn as to how the CNN architectures work when they are coupled with or without transfer learning. A dataset has been considered with the mentioned retinal diseases and no pathology. The designed models could identify the specific disease or no pathology when fed with multiple retinal images of various diseases. The training accuracies obtained for the six architectures, viz. four convolutional layer deep CNNs, VGG (VGG-16 and VGG-19) and Google’s Inception [Google’s Inception v3 (with or without transfer learning)], and Google’s Inception v4, are, respectively, 87.15%, 91.40%, 93.32%, 85.31%, and 83.63%, respectively, while the corresponding validation accuracies are 73.68%, 88.39%, 86.95%, 85.30%, and 79.50%. Thus, the results so obtained are promising in nature and establish the superiority of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hassan, T., Akram, M. U., Hassan, B., Nasim, A., & Bazaz, S. A. (2015, September). Review of OCT and fundus images for detection of Macular Edema. In 2015 IEEE International Conference on Imaging Systems and Techniques (IST) (pp. 1–4). IEEE.

    Google Scholar 

  2. Bagci, A. M., Ansari, R., & Shahidi, M. (2007, November). A method for detection of retinal layers by optical coherence tomography image segmentation. In 2007 IEEE/NIH Life Science Systems and Applications Workshop (pp. 144–147). IEEE.

    Google Scholar 

  3. Fercher, A. F., Hitzenberger, C. K., Drexler, W., Kamp, G., & Sattmann, H. (1993). In-vivo optical coherence tomography. American Journal of Ophthalmology, 116, 113–115.

    Article  Google Scholar 

  4. Swanson, E. A., Izatt, J. A., Hee, M. R., Huang, D., Lin, C. P., Schuman, J. S., et al. (1993). In-vivo retinal imaging by optical coherence tomography. Optics Letters, 18, 1864–1866.

    Article  Google Scholar 

  5. Fercher, A. F. (1996). Optical coherence tomography. Journal of Biomedical Optics, 1(2), 157–174.

    Article  Google Scholar 

  6. Regar, E., Schaar, J. A., Mont, E., Virmani, R., & Serruys, P. W. (2003). Optical coherence tomography. Cardiovascular Radiation Medicine, 4(4), 198–204.

    Article  Google Scholar 

  7. Fujimoto, J. G., Brezinski, M. E., Tearney, G. J., Boppart, S. A., Bouma, B., Hee, M. R., et al. (1995). Optical biopsy and imaging using optical coherence tomography. Nature Medicine, 1(9), 970–972.

    Article  Google Scholar 

  8. Bowd, C., Zangwill, L. M., Berry, C. C., Blumenthal, E. Z., Vasile, C., Sanchez-Galeana, C., et al. (2001). Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Investigative Ophthalmology & Visual Science, 42(9), 1993–2003.

    Google Scholar 

  9. Bowd, C., Zangwill, L. M., Blumenthal, E. Z., Vasile, C., Boehm, A. G., Gokhale, P. A., et al. (2002). Imaging of the optic disc and retinal nerve fiber layer: the effects of age, optic disc area, refractive error, and gender. JOSA A, 19(1), 197–207.

    Article  Google Scholar 

  10. Otani, T., Kishi, S., & Maruyama, Y. (1999). Patterns of diabetic macular edema with optical coherence tomography. American Journal of Ophthalmology, 127(6), 688–693.

    Article  Google Scholar 

  11. Drexler, W., & Fujimoto, J. G. (2008). State-of-the-art retinal optical coherence tomography. Progress in Retinal and Eye Research, 27(1), 45–88.

    Article  Google Scholar 

  12. Bourne, R. R. A., Jonas, J. B., Bron, A. M., Cicinelli, M. V., Das, A., Flaxman, S. R., et al. (2018). Vision loss expert group of the global burden of disease study. Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe in 2015: magnitude, temporal trends and projections. British Journal of Ophthalmology, 102, 575–585.

    Article  Google Scholar 

  13. Romero-Aroca, P. (2013). Current status in diabetic macular edema treatments. World Journal of Diabetes, 4(5), 165.

    Article  Google Scholar 

  14. Rickman, C. B., Farsiu, S., Toth, C. A., & Klingeborn, M. (2013). Dry age-related macular degeneration: mechanisms, therapeutic targets, and imaging. Investigative Ophthalmology & Visual Science, 54(14), ORSF68–ORSF80.

    Google Scholar 

  15. Sengar, N., Dutta, M. K., Burget, R., & Povoda, L. (2015, July). Detection of diabetic macular edema in retinal images using a region based method. In 2015 38th International Conference on Telecommunications and Signal Processing (TSP) (pp. 412–415). IEEE.

    Google Scholar 

  16. Sugmk, J., Kiattisin, S., & Leelasantitham, A. (2014, November). Automated classification between age-related macular degeneration and diabetic macular edema in OCT image using image segmentation. In The 7th 2014 biomedical engineering international conference (pp. 1–4). IEEE.

    Google Scholar 

  17. Quellec, G., Lee, K., Dolejsi, M., Garvin, M. K., Abramoff, M. D., & Sonka, M. (2010). Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula. IEEE Transactions on Medical Imaging, 29(6), 1321–1330.

    Article  Google Scholar 

  18. Naz, S., Ahmed, A., Akram, M. U., & Khan, S. A. (2016, December). Automated segmentation of RPE layer for the detection of age macular degeneration using OCT images. In 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA) (pp. 1–4). IEEE.

    Google Scholar 

  19. Xiang, D., Tian, H., Yang, X., Shi, F., Zhu, W., Chen, H., et al. (2018). Automatic segmentation of retinal layer in OCT images with choroidal neovascularization. IEEE Transactions on Image Processing, 27(12), 5880–5891.

    Article  MathSciNet  Google Scholar 

  20. Parvathi, S. S., & Devi, N. (2007, December). Automatic drusen detection from colour retinal images. In International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007) (Vol. 2, pp. 377–381). IEEE.

    Google Scholar 

  21. Zheng, Y., Wang, H., Wu, J., Gao, J., & Gee, J. C. (2011, March). Multiscale analysis revisited: Detection of drusen and vessel in digital retinal images. In 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (pp. 689–692). IEEE.

    Google Scholar 

  22. Sharif Razavian, A., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-the-shelf: An astounding baseline for recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops (pp. 806–813).

    Google Scholar 

  23. Wang, Y., Zhang, Y., Yao, Z., Zhao, R., & Zhou, F. (2016). Machine learning based detection of age-related macular degeneration (AMD) and diabetic macular edema (DME) from optical coherence tomography (OCT) images. Biomedical Optics Express, 7(12), 4928–4940.

    Article  Google Scholar 

  24. Al-Bander, B., Al-Nuaimy, W., Al-Taee, M. A., Williams, B. M., & Zheng, Y. (2016). Diabetic macular edema grading based on deep neural networks.

    Google Scholar 

  25. Venhuizen, F. G., van Ginneken, B., van Asten, F., van Grinsven, M. J., Fauser, S., Hoyng, C. B., et al. (2017). Automated staging of age-related macular degeneration using optical coherence tomography. Investigative Ophthalmology & Visual Science, 58(4), 2318–2328.

    Article  Google Scholar 

  26. Liu, L., Gao, S. S., Bailey, S. T., Huang, D., Li, D., & Jia, Y. (2015). Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography. Biomedical Optics Express, 6(9), 3564–3576.

    Article  Google Scholar 

  27. Xi, X., Meng, X., Yang, L., Nie, X., Yang, G., Chen, H., et al. (2019). Automated segmentation of choroidal neovascularization in optical coherence tomography images using multi-scale convolutional neural networks with structure prior. Multimedia Systems, 25(2), 95–102.

    Article  Google Scholar 

  28. Khalid, S., Akram, M. U., Hassan, T., Jameel, A., & Khalil, T. (2018). Automated segmentation and quantification of drusen in fundus and optical coherence tomography images for detection of ARMD. Journal of Digital Imaging, 31(4), 464–476.

    Article  Google Scholar 

  29. Lee, C. S., Baughman, D. M., & Lee, A. Y. (2017). Deep learning is effective for classifying normal versus age-related macular degeneration OCT images. Ophthalmology Retina, 1(4), 322–327.

    Article  Google Scholar 

  30. Lee, C. S., Tyring, A. J., Deruyter, N. P., Wu, Y., Rokem, A., & Lee, A. Y. (2017). Deep-learning based, automated segmentation of macular edema in optical coherence tomography. Biomedical optics express, 8(7), 3440–3448.

    Google Scholar 

  31. Schlegl, T., et al. (2017). Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology, 125(4), 549–558.

    Google Scholar 

  32. Kermany, D. S., et. al. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5), 1122–1131.

    Google Scholar 

  33. Karri, S. P., Chakraborty, D., & Chatterjee, J. (2017). Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration. Biomedical optics express, 8(2), 579–592.

    Google Scholar 

  34. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems pp. 1097–1105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, K., Chaudhuri, S.S., Roy, P., Chatterjee, S., Banerjee, S. (2020). Transfer Learning Coupled Convolution Neural Networks in Detecting Retinal Diseases Using OCT Images. In: Mandal, J., Banerjee, S. (eds) Intelligent Computing: Image Processing Based Applications. Advances in Intelligent Systems and Computing, vol 1157. Springer, Singapore. https://doi.org/10.1007/978-981-15-4288-6_10

Download citation

Publish with us

Policies and ethics