Skip to main content

Epileptic Seizure Detection from Multivariate Temporal Data Using Gated Recurrent Unit

  • Conference paper
  • First Online:
  • 542 Accesses

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 127))

Abstract

The advancement in sensor and satellite technologies, biomedical informatics, climate informatics, and health care has led to the emergence of multivariate temporal data. Multivariate temporal data contains multiple time series with complex temporal behaviors. Mining Knowledge from such complex data remains challenging area of research. This paper primarily focuses on developing temporal decision support system in medical (TDSSM) to detect epileptic seizure from multivariate temporal data. This work uses deep neural networks to build temporal classification model for epileptic seizure detection. The temporal model for epilepsy seizure detection is constructed by training the gated recurrent unit using multivariate temporal dependencies of time series observations acquired from the EEG recording of 500 individuals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Epilepsy facts and figures (1999). Epilepsy Foundation of America, Landover

    Google Scholar 

  2. Gotman J (1982) Automatic recognition of epileptic seizures in the EEG. Electroencephalography Clin Neurophysio 54:530–540

    Article  Google Scholar 

  3. Osorio I, Frei M, Wilkinson S (1998) Real-time automated detection and quantitative analysis of seizures and short-term prediction of clinical onset. Epilepsia 39:615–627

    Article  Google Scholar 

  4. Lehnertz K, Elger CE (1995) Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Electoencephalogr Clin Neurophysiol 95:108–117

    Article  Google Scholar 

  5. Lehnertz K, Elger CE (1998) Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity. Phys Rev Lett 80:5019–5022

    Article  Google Scholar 

  6. Le Van Quyen M, Martinerie J, Baulac M, Valera F (1999) Anticipating epilepticseizuresinrealtimebyanon-linearanalysisofsimilaritybetween EEG recordings. NeuroReport 10:2149–2155

    Article  Google Scholar 

  7. Iasemidis LD, Shiau DS, Chaovalitwongse W, Sackellares J, Pardalos PM, Principe JC, Carney PR, Prasad A, Veeramani B, Tsakalis K (2003) Adaptive epileptic seizure prediction system. IEEE Trans Biomed Eng 50(5):616–627

    Article  Google Scholar 

  8. Sackellares JC, Shiau DS, Principe JC, Yang MC, Dance LK, Suharitdamrong W, Chaovalitwongse W, Pardalos PM, Iasemidis LD (2006) Predictability analysis for an automated seizure prediction algorithm. Expert Syst Appl 23(6):509–520

    Google Scholar 

  9. Adeli H, Ghosh-Dastidar S, Dadmehr N (2007) Awavelet-chaosmethodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans Biomed Eng 54(2):205–211

    Article  Google Scholar 

  10. Sabesan S, Chakravarthy N, Tsakalis K, Pardalos P, Iasemidis L (2009) Measuring resetting of brain dynamics at epileptic seizures: application of global optimization and spatial synchronization techniques. Comb J Optim 17(1):74–97

    Article  MathSciNet  Google Scholar 

  11. Meier R, Dittrich H, Schulze-Bonhage A, Aertsen A (2008) Detecting epileptic seizures in long-term human EEG: a new approach to automatic online and real-time detection and classication of polymorphic seizure patterns. Clin J Neurophysiol 25(3):119–131

    Article  Google Scholar 

  12. Islam MK et al (2016) A wavelet-based artifact reduction from scalp EEG forepilepticseizuredetection. IEEE J Biomed Health Informat 20(5):1321–1332

    Google Scholar 

  13. Zhou W et al (2013) Epilepticseizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG. IEEE Trans Biomed Eng 60(12):3375–3381

    Article  Google Scholar 

  14. Srinivasan V et al (2005) Articial neural network based epileptic detection using time-domain and frequency-domain features. Med J Syst 29(6):647–660

    Article  Google Scholar 

  15. Sriraam N, Raghu S (2017) Classication of focal and non-focal epileptic seizures using multi-features and SVM classier. Med J Syst 41(160):1–14

    Google Scholar 

  16. Aarabi A et al (2009) A fuzzy rule-based system for epilepticseizure detection in intracranial EEG. Clin Neurophysiol 120:1648–1657

    Article  Google Scholar 

  17. Srinivasan V et al (2007) Approximate entropy-based epileptic EEG detection using articial neural networks. IEEE Trans Inf Technol Biomed 11(3):288–295

    Article  Google Scholar 

  18. Maryann D, Alessandro, Esteller R, Vachtsevanos G, Hinson A, Echauz J, Litt B (2003) Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: a report of four patients. IEEE Trans Biomed Eng 50(5)

    Google Scholar 

  19. Firpi H, Goodman ED, Echauz J (2007) Epileptic seizure detection using genetically programmed articial features. IEEE Trans Biomed Eng 54(2)

    Google Scholar 

  20. Chisci L, Mavino A, Perferi G, Sciandrone M, Anile C, Colicchio G, Fuggetta F (2010) Real-time epileptic seizure prediction using AR models and support vector machines. IEEE Trans Biomed Eng 57(5)

    Google Scholar 

  21. Zandi AS, Javidan M, Dumont A, Tafreshi R (2010) Automated real-time epileptic seizure detection in scalp EEG recordings using an algorithm based on wavelet packet transform. IEEE Trans Biomed Eng 57(7)

    Google Scholar 

  22. Raghu S, Shiram N (2017) Optimal configuration of multilayer perceptron neural network classifier for recognition of interancial epileptic seizure. Expert Syst Appl

    Google Scholar 

  23. Raghu S, Sriraam N, Pradeep Kumar G, Hegde AS (2018) A novel approach for real-time recognition of epileptic seizures using minimum variance modified fuzzy entropy. IEEE Transactions on Biomedical Engineering. 65(11), (2018)

    Google Scholar 

  24. Georgiy R, John B, Martha J, Richard N (2010) Patient-specific early seizure detection from scalp electroencephalogram. J Clin Neurophysiol 27(3)

    Google Scholar 

  25. Palangi H, Deng L, Shen Y, Gao J, He X, Chen J, Song X, Ward R (2016) Deep sentence embedding using the long short-term memory networks: analysis and application to information retrieval. IEEE/ACM Trans Audio Speech Lang Process 24(4):694–707

    Article  Google Scholar 

  26. Graves A, Mohamed AR, Hinton G (2013) Speech recognition with deep recurrent neural networks. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 6645–6649

    Google Scholar 

  27. Krizhevsky A, Sutskever I Hinton GE (2012) Imagenet classication with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

    Google Scholar 

  28. Cho K, Van Merrienboer B, Gulcehre C, Bougares F, Schwenk H, Yoshua B (2014) Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078

  29. Abdelhameed AM, Hisham G, Magdy B (2018) Deep convolutional bidirectional LSTM recurrent neural network for epileptic seizure detection. In: IEEE international new circuits and systems conference (NEWCAS)

    Google Scholar 

  30. Mohammad AN, Homayoun MN (2010) Analysis and classification of EEG signals using spectral analysis and recurrent neural networks. In: 17th Iranian conference of biomedical engineering (ICBME)

    Google Scholar 

  31. Samiee K, Kovacs P, Gabbouj M (2015) Epileptic seizure classification of EEG time-series using rational discrete short-time fourier transform. IEEE Trans Biomed Eng 62(2):541–552

    Google Scholar 

  32. Han-Tai S, Vladimir C, Jieun L, Brandon V, Edward E, Benjamin H, Gregory A (2017) SVM-based system for prediction of epileptic seizures from iEEG signal. IEEE Trans Biomed Eng 62(2):1011–1022

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saranya Devi Jeyabalan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jeyabalan, S.D., Yesudhas, N.J. (2021). Epileptic Seizure Detection from Multivariate Temporal Data Using Gated Recurrent Unit. In: Tripathy, A., Sarkar, M., Sahoo, J., Li, KC., Chinara, S. (eds) Advances in Distributed Computing and Machine Learning. Lecture Notes in Networks and Systems, vol 127. Springer, Singapore. https://doi.org/10.1007/978-981-15-4218-3_47

Download citation

Publish with us

Policies and ethics