Conversion of Methane to Aromatic Hydrocarbons



The conversion of methane to aromatic hydrocarbons under non-oxidative reaction conditions using Mo-modified zeolites (Mo-zeolites) as catalysts is discussed. This reaction is known as methane dehydroaromatization (MDA). The MDA reaction, which can also proceed over H+-exchanged zeolites modified with other metal species (Fe, Re, W, Ru, Cr, Zn, Pt, and Mn), simultaneously produces both aromatic hydrocarbons, such as benzene and hydrogen via ethylene. The effects of the zeolite pore structure, Si/Al ratio of the zeolite, catalyst preparation conditions, and reaction operation conditions on the catalytic properties and activities of Mo-zeolites are discussed. The reaction mechanisms of C–C bond formation at the initial stage via the activation of methane over the Mo-zeolites and subsequent benzene formation are focused upon; the bifunctionality of the Mo-zeolite catalysts and the nature of the active molybdenum species in the MDA reaction are also discussed. In the initial stage, various molybdenum species, such as MoCx species, take part in the first C–C bond formation to produce C2H6 and C2H4 from CH4. Subsequently, acidic Brønsted acid sites (acidic protons) catalyze the conversion of C2H4 to benzene (C2H4 oligomerization), showing that the MDA reaction proceeds via bifunctional catalysis. However, catalyst deactivation remains a serious problem. The reaction inevitably produces carbon deposits on the catalyst, which precludes its industrial application. To increase the catalyst lifetime and optimize the conditions for continuous catalyst regeneration, computational studies and further catalyst characterization are continuing.


Methane dehydroaromatization Benzene formation Mo-modified zeolites Bifunctional catalysis Molybdenum carbide species 


  1. 1.
    Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X (2014) Direct non oxidative conversion of methane to ethylene, aromatics and hydrogen. Science 344:616–619PubMedCrossRefGoogle Scholar
  2. 2.
    Bragin O, Vasina T, Isakov YI, Prebrazhenskii A, Prebrazhenskii A, Palishkina N, Minachev KM (1982) Catalytic aromatization of methane and ethane. Russ Chem Bull 31:847CrossRefGoogle Scholar
  3. 3.
    Shepelev SS, Inoe KG (1983) Catalytic properties of zeolite with structure and chemical compositions in preparation of hydrocarbons from methane. React Kinet Catal Lett 23:319–322CrossRefGoogle Scholar
  4. 4.
    Anderson JR, Tsai P (1985) Oxidation of methane over H-ZSM-5 and other catalysts. Appl Catal 191:141–152CrossRefGoogle Scholar
  5. 5.
    Wang L, Tao L, Xie M, Xu G (1993) Dehydrogenation of aromatization of methane under non-oxidative conditions. Catal Lett 21:35–41CrossRefGoogle Scholar
  6. 6.
    Xu Y, Lin L (1999) Recent advances in methane dehydroaromatization over transition metal ion-modified zeolite catalysts under non-oxidative conditions. Appl Catal A: General 188:53–67CrossRefGoogle Scholar
  7. 7.
    Ismagilov ZR, Matus EV, Tsikoza LT (2008) Direct conversion of methane on Mo/ZSM-5 catalysts to produce benzene and hydrogen: achievements and perspectives. Energy Environ Sci 1:526–541CrossRefGoogle Scholar
  8. 8.
    Ma S, Guo X, Zhao L, Scott S, Bao X (2013) Recent progress in methane dehydroaromatization: from laboratory curiosities to promising technology. J Energy Chem 22:1–20CrossRefGoogle Scholar
  9. 9.
    Mamonov NA, Fadeeve EV, Grigoriev DA, Mikhailov MN, Kustov LM, Alkhimov SA (2013) Metal/Zeolite catalysts of methane dehydroaromatization. Russ Chem Rev 82:567–585CrossRefGoogle Scholar
  10. 10.
    Spivey JJ, Hutchings G (2014) Catalytic aromatization of methane. Chem Soc Rev 43:792–803PubMedCrossRefGoogle Scholar
  11. 11.
    Vollmer I, Yurulina I, Kapteijn F, Gascon J (2018) Progress in developing a structure-activity relationship for the direct aromatization of methane. ChemCatChem 10:1–15CrossRefGoogle Scholar
  12. 12.
    Xu Y, Lu J, Wang J, Suzuki Y, Zhang ZG (2011) The catalytic stability of Mo/HZSM-5 in methane dehydroaromatization at sever and periodic CH4-H2 switch operation conditions. Chem Eng J 168:390–402CrossRefGoogle Scholar
  13. 13.
    Brady C, Murphy B, Xu B (2017) Enhanced methane dehydroaromatization via coupling with chemical looping. ACS Catal 7:3924–3928CrossRefGoogle Scholar
  14. 14.
    Cao Z, Jiang H, Luo H, Baumann S, Meulenberg WA, Assmann J, Mleczko L, Liu Y, Caro J (2013) Natural gas to fuels and chemicals: improved methane aromatization in as oxygen-permeable membrane reactor. Angew Chem Int Ed 52:13794–13797CrossRefGoogle Scholar
  15. 15.
    Yuste-Tirados I, Maleró-Fjeld H, Vestre PK, Coors WG, Martinez A, Norby T, Serra JM, Kjólseth C (2016) Direct conversion of methane to aromatics in catalytic co-ionic membrane reactor. Science 353:563–566PubMedCrossRefGoogle Scholar
  16. 16.
    Xue J, Chen Y, Wei Y, Feldhoft A, Wang H, Caro J (2016) Gas to liquids: natural gas conversion to aromatic fuels and chemicals in hydrogen permeable ceramic hollow fiber membrane reactor. ASC Catal 6:2448–2451Google Scholar
  17. 17.
    Xu Y, Bao X, Lin L (2003) Direct conversion of methane under nonoxidative conditions. J Catal 216:386–395CrossRefGoogle Scholar
  18. 18.
    Okolie C, Lyu Y, Kovarik LV, Stavitski E, Sievers C (2018) Coupling of methane to ethane, ethylene and aromatics over nickel on ceria-zirconia at low temperatures. ChemCatChem 10:2700–2708CrossRefGoogle Scholar
  19. 19.
    Shu Y, Ma D, Xu L, Xu Y, Bao X (2000) Methane dehydro-aromatization over Mo/MCM-22 catalysts: a highly selective catalysts for the formation of benzene. Catal Lett 70:67–73CrossRefGoogle Scholar
  20. 20.
    Li Y, Su L, Wang H, Li H, Shen W, Bao X, Xu Y (2003) Combined single-pass conversion of methane via oxidative coupling and dehydroaromatization. Catal Lett 89:275–279CrossRefGoogle Scholar
  21. 21.
    Liu S, Wang L, Ohnishi R, Ichikawa M (1999) Bifunctional catalysis of Mo/HZSM-5 in the dehydroaromatization of methane to benzene and naphthalene XAFS/TG/DTA/MAS/FTIR characterization and supporting effects. J Catal 181:175–188CrossRefGoogle Scholar
  22. 22.
    Shu Y, Ma D, Tian B, Xu Y, Bao X (1999) Methane dehydrogenation and aromatization over Mo/HZRP-1 catalyst in the absence of oxygen, I. Catalytic evaluation including formation of coke over Mo/HZRP-1 catalyst. Chin J Catal 20:279–284Google Scholar
  23. 23.
    Liu H, Kan Q (2017) Improved performance of hierarchical porous Mo/H-IM-5. Appl Petrochem Res 7:97–105CrossRefGoogle Scholar
  24. 24.
    Martìnez A, Peris E, Sastre G (2005) Dehydroaromatization of methane under non-oxidative conditions over bifunctional Mo/ITQ-2 catalysts. Catal Today 107–108:676–684CrossRefGoogle Scholar
  25. 25.
    Wang ST, Xu Y, Liu W, Wang L, Guo X (1996) Methane activation without using oxidants over supported Mo catalysts. Appl Catal A: General 136:7–17CrossRefGoogle Scholar
  26. 26.
    Ohnishi R, Xu X, Issoh K, Ichikawa M (2001) Catalytic dehydroaromatization of methane towards benzene and naphthalene on zeolite-supported Re and Mo-Templating roles of micropore and novel mechanism. Stud Surf Sci Catal 136:393–398CrossRefGoogle Scholar
  27. 27.
    Shu Y, Ma D, Bao X, Xu Y (2000) Methane dehydro-aromatization over a Mo/Phosphoric rare earth oxide-containing penta-sil type zeolite in the absence of oxygen. Catal Lett 66:161–167CrossRefGoogle Scholar
  28. 28.
    Zhang CL, Li S, Yuan Y, Zhang WX, Wu TH, Lin LW (1998) Aromatization of methane in the absence of oxygen over Mo-based catalysts supported on different types of zeolites. Catal Lett 56:207–213CrossRefGoogle Scholar
  29. 29.
    Wu Y, Emdadi L, Schulman E, Shu T, Tran DT, Wang X, Liu D (2018) Overgrowth of lamellar silicate-1 on MFI and BEA zeolites and its consequence on non-oxidative methane aromatization reaction. Microporous Mesoporous Mater 263:1–10CrossRefGoogle Scholar
  30. 30.
    Liu S, Wang L, Ohnishi R, Ichikawa M (2000) Bifunctional catalysis of Mo/HZSM-5 in the dehydroaromatization of methane with CO/CO2 to benzene and naphthalene. Kinet Catal 41:132–144CrossRefGoogle Scholar
  31. 31.
    Sriglan A, Savasci ÖT, Erdem-Senatalar A, Tuel A, Sapaly G, Taârit YB (2007) The effect of support morphology on the activity of HZSM-5 supported molybdenum catalysts fro aromatization of methane. J Catal 246:35–39CrossRefGoogle Scholar
  32. 32.
    Mátus EV, Ismagilov IZ, Sukhova OB, Zaukouskii IV, Tsikoza LT, Ismagilov ZR (2007) Study of methane dehydroaromatization on impregnated Mo/ZSM-5 catalysts and characterization of nanostructured molybdenum phase and carbonaceous deposit. Ind Eng Chem Res 46:4063–4074CrossRefGoogle Scholar
  33. 33.
    Weckhuysen BM, Wang D, Rosynek MP, Lunsford JH (1998) Conversion of methane to benzene over transition metal ion ZSM-5 zeolites. I. Catalytic characterization. J Catal 175:338–346CrossRefGoogle Scholar
  34. 34.
    Tan P (2016) Active phase, catalytic activity, and induction period of Fe/Zeolite material in nonoxidative aromatization of methane. J Catal 338:21–29CrossRefGoogle Scholar
  35. 35.
    Li Y, Veser G (2016) The nature of the selective species in Fe-HZSM-5 for non-oxidative methane dehydroaromatization. Catal Sci Technol 6:5440–5452CrossRefGoogle Scholar
  36. 36.
    Weckhuysen BM, Wang D, Rosynek MP, Lunsford JH (1997) Catalytic conversion of methane into aromatic hydrocarbons over iron oxide loaded ZSM-5 zeolite. Angew Chem Int Ed Engl 36:2374–2376CrossRefGoogle Scholar
  37. 37.
    Ding W, Meitner GD, Marler DO, Igleshia E (2001) Synthesis, structural characterization, and catalytic properties of tungsten-exchanged H-ZSM-5. J Phys Chem B 105:3928–3936CrossRefGoogle Scholar
  38. 38.
    Zeng JL, Xiong ZT, Zhang HB, Lin GD, Tsai KR (1998) Nonoxidative dehydrogenation and aromatization of methane over W/HZSM-5 based catalyst. Catal Lett 53:119–124CrossRefGoogle Scholar
  39. 39.
    Ohnishi R, Ichikawa M (2002) Effect of CO2/CO addition in dehydroaromatization of methane on zeolite-supported Mo and Re catalysts towards hydrogen, benzene, and naphthalene. Catal Surv Jpn 7:103–110CrossRefGoogle Scholar
  40. 40.
    Wang L, Ohnishi R, Ichikawa M (2000) Selective dehydroaromatization of methane towards benzene on Re/HZSM-5 catalysts and effects of CO/CO2 addition. J Catal 190:276–283CrossRefGoogle Scholar
  41. 41.
    Su L, Ma D, Kiu X, Xu Y, Bao X (2002) Methane aromatization on Re/HZSM-5 system under non-oxygen condition. Chin J Catal 23:41–45Google Scholar
  42. 42.
    Nahreen S, Praserthdam S, Beltran SP, Ballbuena PB, Adhikari S, Gupta RB (2016) Catalytic upgrading of methane to higher hydrocarbons in a nonoxidative chemical conversion. Energy Fuels 30:2584–2593CrossRefGoogle Scholar
  43. 43.
    Abdelsayed V, Smoith MW, Shekhuwat D (2015) Investigation of the stability of Zn-based HZSM-5 catalysts for methane dehydroaromatization. Appl Catal A: General 505:365–374CrossRefGoogle Scholar
  44. 44.
    Zhang H, Lou H, Zheng X (2004) Catalytic conversion of methane at low temperature over 6% Zn/HZSM-5 zeolite. Chin J Catal 25:255–256Google Scholar
  45. 45.
    Gerceker D, Motagamwala AH, Rivera-Dones KR, Miller JB, Huber GW, Mavrikakis M, Dumesic JA (2017) Methane conversion to ethylene and aromatics on PtSn catalysts. ASC Catal 7:2088–2100Google Scholar
  46. 46.
    Tan PL, Au CT, Li SY (2006) Methane dehydrogenation and aromatization over 4wt% Mn/HZSM-5 in the absence of an oxidant. Catal Lett 112:239–245CrossRefGoogle Scholar
  47. 47.
    Burna SJ, Hargreaves JS, Pal P, Parida KM, Parija S (2006) The effect of dopants on the activity of MoO3/ZSM-5 catalysts for the dehydroaromatization of methane. Catal Today 114:383–387CrossRefGoogle Scholar
  48. 48.
    Liu S, Dong Q, Ohnishi R, Ichikawa M (1997) Remarkable non-oxidative conversion of methane to naphthalene and benzene on Co and Fe modified Mo/HZSM-5 catalysts. Chem Commun 1455–1456Google Scholar
  49. 49.
    Cheng X, Yan P, Zhang X, Yang F, Pai C, Li D, Ma XX (2017) Enhanced methane dehydroaromatization in the presence of CO2 over Fe- and Mg-modified Mo/ZSM-5. J Mol Catal 437:114–120CrossRefGoogle Scholar
  50. 50.
    Vosmerikov AV, Zaikovskii VI, Korobitsyna LL, Echevskii GV, Barbashin YE, Zhuravkov ZP (2009) Nonoxidative conversion methane into aromatic hydrocarbons on Ni-Mo/ZSM-5 catalysts. Kinet Catal 50:725–733CrossRefGoogle Scholar
  51. 51.
    Liu HM, Tian BL, Li YG, Bao XH, Xu YD (2003) Effect of Co additive on the formation of coke deposits in methane dehydro-aromatization over Mo/HZSM-5 catalyst. Chin J Catal 24:123–128Google Scholar
  52. 52.
    Li S, Zhang C, Kan Q, Wang D, Wu T, Lin L (1999) The function of Cu(II) ions in the Mo/Cu/H-ZSM-5 catalyst for methane conversion under non-oxidative condition. Appl Catal A: General 187:199–206CrossRefGoogle Scholar
  53. 53.
    Qi S, Yang B (2004) Methane aromatization using Mo-based catalysts prepared by microwave heating. Catal Today 98:639–645CrossRefGoogle Scholar
  54. 54.
    Zhang YP, Wang DJ, Fei JH, Zheng XM (2001) Methane aromatization under O2-free conditions on zinc modified Mo/HZSM-5 catalyst. React Kinet Catal Lett 74:151–161CrossRefGoogle Scholar
  55. 55.
    Liu BS, Yang Y, Sayari A (2001) Non-oxidative dehydroaromatization of methane over Ga-promoted Mo/HZSM-5 based catalysts. Appl Catal A: General 214:95–102CrossRefGoogle Scholar
  56. 56.
    Liu BS, Jiang L, Sun H, Au CT (2007) XPS, XAFS and TG/DTA characterization of deposited carbon in methane dehydroaromatization over Ga-Mo/ZSM-5 catalyst. Appl Surf Sci 253:5092–5100CrossRefGoogle Scholar
  57. 57.
    Tshabalala TE, Coville NJ, Scurrell MS (2014) Dehydroaromatization of methane over doped Pt/Mo/H-ZSM-5 zeolite catalysts: the promotion effect of tin. Appl Catal A: General 485:238–244CrossRefGoogle Scholar
  58. 58.
    Kojima R, Kikuchi S, Ma H, Bai J, Ichikawa M (2006) Promotion effects of Pt and Rh on catalytic performance of Mo/HZSM-5 and Mo/HMCM-22 in selective methane-to-benzene reaction. Catal Lett 110:15–21CrossRefGoogle Scholar
  59. 59.
    Wang ST, Xu Y, Wang L, Liu S, Li G, Xie M, Guo X (1996) Methane and ethane activation without adding oxygen: promotional effect of W in Mo-W/H-ZSM-5. Catal Lett 38:39–43CrossRefGoogle Scholar
  60. 60.
    Zhang Y, Wang W, Fei J, Zheng X (2002) Effect of Cr addition on the methane aromatization performance of the Mo/HZSM-5. Aust J Chem 55:531–534CrossRefGoogle Scholar
  61. 61.
    Shu Y, Xu Y, Wang ST, Wang L, Guo X (1997) Promotion effect of Ru on the dehydrogenation and aromatization of methane in the absence of oxygen over Mo/HZSM-5 catalysts. J Catal 170:11–19CrossRefGoogle Scholar
  62. 62.
    Wang L, Xu Y, Wong ST, Cui W, Guo X (1997) Activity and stability enhancement of Mo/HZSM-5 based catalysts for methane non-oxidative transformation to aromatics and C2 hydrocarbons: effect of additives and pretreatment conditions. Appl Catal A: General 152:173–182CrossRefGoogle Scholar
  63. 63.
    Ngobeni MW, Carley AF, Scurrell MS, Nicolaides CP (2009) The effect of boron and silver on the oxygen-free conversion of methane over Mo/H-ZSM-5 catalysts. J Mol Catal A: Chemical 305:40–46CrossRefGoogle Scholar
  64. 64.
    Zhao J, Wang X, Zhang T, Tang J, Ren L, Li L, Lin L (2002) Promotion effect of Indium on dehydroaromatization of methane over Mo/HZSM-5 catalyst without adding oxygen. Chin J Catal 23:197–198Google Scholar
  65. 65.
    Chen L, Lin L, Xu Z, Li X, Zhang T (1995) Dehydro-oligomerization of methane to ethylene and aromatics over Molybdenum/HZSM-5 catalyst. J Catal 157:190–200CrossRefGoogle Scholar
  66. 66.
    Wang D, Lunsford JH, Rosynek MP (1996) Catalytic conversion of methane to benzene over Mo/ZSM-5. Top Catal 3:289–297CrossRefGoogle Scholar
  67. 67.
    Xu Y, Liu S, Wang L, Xie M, Guo X (1995) Methane activation without using oxidant over Mo/HZSM-5 zeolite catalysts. Catal Lett 30:135–149CrossRefGoogle Scholar
  68. 68.
    Tan PL, Au CT, Lai SY (2007) Effect of acidify ion and basify ion of impregnating solution on the performance of Mo/HZSM-5 in methane aromaticzation. Appl Catal A: General 324:36–41CrossRefGoogle Scholar
  69. 69.
    Ma D, Lu Y, Su L, Xu Z, Tian Z, Xu Y, Lin L, Bao X (2002) Remarkable improvement on the methane aromatization reaction: a highly selective and coking-resistant catalyst. J Phys Chem B 106:8524–8530CrossRefGoogle Scholar
  70. 70.
    Xu Y, Shu Y, Liu S, Huang J, Guo X (1995) Interaction between ammonium heptamolybdate and NH4ZSM-5 zeolite: the location of Mo species and acidity of Mo/HZSM-5. Catal Lett 35:233–243CrossRefGoogle Scholar
  71. 71.
    Borry RW III, Kim YH, Huffsmith A, Reimer JA, Iglesia E (1999) Structure and density of Mo and acid sites in Mo-exchanged H-ZSM-5 catalysts for nonoxidative methane conversion. J Phys Chem B 103:5787–5796CrossRefGoogle Scholar
  72. 72.
    Li W, Meitzner GD, Borry RW III, Iglesia E (2000) Raman and X-ray absorption studies of Mo species in Mo/H-ZSM-5 catalyst for non-oxidative CH4 reaction. J Catal 191:373–383CrossRefGoogle Scholar
  73. 73.
    Kim YH, Borry RW III, Iglesia E (2000) Genesis of methane activation sites in Mo-exchanged H-ZSM-5 catalysts. Microporous Mesoporous Mater 35–36:495–509CrossRefGoogle Scholar
  74. 74.
    Minming H, Howe H (1987) Characterization of MoY zeolites prepared by aqueous ion exchange. J Catal 108:283–293CrossRefGoogle Scholar
  75. 75.
    Vahel A, Huebener S, Eichler B (1995) Thermochromatographic studies of oxide and hydroxide species of molybdenum-model experiments with respect to the physico-chemical characterization of element 106. Radiochi Acta 69:233–239Google Scholar
  76. 76.
    Giordano N, Bart JC, Vaghi A, Castellan A, Maritiotti G (1975) Structure and catalytic activity of MoO3 Al2O3 systems I. Solid-state properties of oxidized catalysts. J Catal 36:81–92CrossRefGoogle Scholar
  77. 77.
    Xu Y, Liu W, Wang ST, Wang L, Guo X (1996) Dehydrogenation and aromatization of methane in the absence of oxygen on Mo/HZSM-5 catalysts before and after NH4OH extraction. Catal Lett 40:207–214CrossRefGoogle Scholar
  78. 78.
    Gao J, Zheng Y, Jehng JM, Tang Y, Wachs IE, Podkolzin SG (2015) Identification of molybdenum oxide nanostructures on zeolite for natural gas conversion. Science 348:686–690PubMedCrossRefGoogle Scholar
  79. 79.
    Rcie MJ, Chakraborty AK, Bell AT (1999) Al next nearest neighbor, ring occupant and proximity statistics in ZSM-5. J Catal 186:222–227CrossRefGoogle Scholar
  80. 80.
    Standicka K, Haber J, Kozlowski R (1977) The crystal structure of magnesium dimolybdate. Acta Cryst B33:3859–3862Google Scholar
  81. 81.
    Savinelli RO, Scott SL (2010) Wavelet transform EXAFS analysis of mono- and dimolybdate model compounds and a Mo/H-ZSM-5 dehydroaromatization catalyst. Phys Chem Chem Phys 12:5660–5667PubMedCrossRefGoogle Scholar
  82. 82.
    Bars PO, Le JY, Grandjean MD (1977) Etude de chromates, molybdates et tungstates hydrate’s I. Etude structurale de MgMoO4 5H2O. Acta Crst B33:1155–1157CrossRefGoogle Scholar
  83. 83.
    Amberg M, Günter JR, Schmalle H (1988) Preparation, crystal structure, and luminescence of magnesium molybdate and tungstate monohydrate, MgMoO4 · H2O and MgWO4 · H2O. J Solid State Chem 77:162–169CrossRefGoogle Scholar
  84. 84.
    Zhou D, Ma D, Liu X, Bao X (2001) Study with density functional theory method on methane dehydro-aromatization over Mo/HZSM-5 catalysts I: optimization of active Mo species bonded to ZSM-5 zeolite. J Chem Phys 114:9125–9129CrossRefGoogle Scholar
  85. 85.
    Goodman BR, Hass KC, Schneider WF, Adams JB (2000) Statistical analysis of Al distributions and metal ion pairing probabilities in zeolites. Catal Lett 68:85–93CrossRefGoogle Scholar
  86. 86.
    Tessonnier JP, Louis B, Walspurger S, Sommer J, Ledoux MJ, Pham-Huu C (2006) Quantitative measurement of the Brönsted acid sites in solid acids: toward a single-site design of Mo-modified ZSM-5 zeolite. J Phys Chem B 110:10390–10395PubMedCrossRefGoogle Scholar
  87. 87.
    Solymosi F, Erdöhelyi A, Szöke A (1995) Dehydrogenation of methane on supported molybdenum oxide. Formation of benzene from methane. Catal Lett 32:43–53CrossRefGoogle Scholar
  88. 88.
    Wang D, Lunsford JH, Rosynek MP (1997) Characterization of a Mo/ZSM-5 catalyst for the conversion of methane to benzene. J Catal 169:347–358CrossRefGoogle Scholar
  89. 89.
    Eeckhuysen BM, Wang D, Rosynek MP, Lunsford JH (1998) Conversion of methane to benzene over transition metal ion ZSM-5 zeolites. II Catalyst characterization by X-ray photoelectron spectroscopy. J Catal 175:347–351CrossRefGoogle Scholar
  90. 90.
    Solymois F, Cserényi J, Szöke A, Bánsági T, Oszkó A (1997) Aromatization of methane over supported and unsupported Mo-based catalysts. J Catal 165:150–161CrossRefGoogle Scholar
  91. 91.
    Jiang H, Wang L, Cui W, Xu Y (1999) Study on the induction period of methane aromatization over Mo/HZSM-5: partial reduction of Mo species and formation of carbonaceous deposit. Catal Lett 57:95–102CrossRefGoogle Scholar
  92. 92.
    Ma D, Shu Y, Cheng M, Xu Y, Bao X (2000) On the induction period of methane aromatization over Mo-based catalysts. J Catal 194:105–114CrossRefGoogle Scholar
  93. 93.
    Ding W, Li S, Meitzner GD, Iglesia E (2001) Methane conversion to aromatics on Mo/H-ZSM-5: structure of molybdenum species in working catalysts. J Phys Chem B 105:506–513CrossRefGoogle Scholar
  94. 94.
    Li B, Li S, Li N, Chen H, Zhang W, Bao X, Lin B (2006) Structure and acidity of Mo/ZSM-5 synthesized by solid state reaction for methane dehydrogenateion and aromatization. Microporous Mesoporous Mater 88:244–253CrossRefGoogle Scholar
  95. 95.
    Liu H, Bao X, Xu Y (2006) Methane dehydroaromatization under nonoxidative conditions over Mo/HZSM-5 catalysts: identification and preparation of the Mo active species. J Catal 239:441–450CrossRefGoogle Scholar
  96. 96.
    Vollmer I, van der Linden B, Ould-Chikh S, Aguilar-Tapia A, Yarulina I, Abou-Hamad E, Sneider YG, Suarez AIO, Hazemann JL, Kaptteijin F, Gascon G (2018) On the dynamic nature of Mo sites for methane dehydroaromatization. Chem Sci 9:4801–4807PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Budde PK, Singh AK, Upadhyayula S (2018) Non-oxidative methane dehydroaromatization reaction over highly active α-MoC1-x ZSM-5 derived from pretreatment. J Chem Sci (Berlin Germany) 130:1–6. Scholar
  98. 98.
    Lezcano-González I, Oord R, Rovezzi M, Glatzel P, Botchway SW, Weckhuysen BM, Beale AM (2016) Molybdenum speciation and its impact on catalytic activity during methane dehydroaromatization in zeolite ZSM-5 as revealed by operand X-ray method. Angew Chem Int Ed 55:5215–5219CrossRefGoogle Scholar
  99. 99.
    Ma D, Shu Y, Bao X, Xu Y (2000) Methane dehydro-aromatization under nonoxidative conditions over Mo/HZSM-5 catalysts: ESR study of the Mo species on/in the ZSM-5 zeolite. J Catal 189:314–325CrossRefGoogle Scholar
  100. 100.
    Solymois F, Szöke A, Cserényi J (1996) Conversion of methane to benzene over MO2C and Mo2C/ZSM-5 catalysts. Catal Lett 39:157–161CrossRefGoogle Scholar
  101. 101.
    Liu H, Shen Bao WX, Xu Y (2005) Methane dehydroaromatization over Mo/H-ZSM-5 catalysts: the reactivity of MoCX species formed from MoX associated and non-associated with Brönsted acid sites. Appl Catal A: General 295:79–88CrossRefGoogle Scholar
  102. 102.
    Zhang JZ, Log MA, Howe RF (1998) Molybdenum ZSM-5 zeolite catalysts fir the conversion of methane to benzene. Catal Today 44:293–300CrossRefGoogle Scholar
  103. 103.
    Liu H, Shen W, Bao X, Xu Y (2006) Identification of Mo active species for methane dehydro-aromatization over Mo/HZSM-5 catalyst in the absence of oxygen: 1H MAS NMR and EPR investigations. J Mol Catal A Chemical 244:229–236CrossRefGoogle Scholar
  104. 104.
    Pierella LB, Wang L, Anunziata OA (1997) Methane direct conversion to aromatic hydrocarbons at low reaction temperature. React Kinet Catal Lett 60:101–106CrossRefGoogle Scholar
  105. 105.
    Sheng H, Schreiner EP, Zheng W, Loba RF (2018) Non-oxidative coupling of methane to ethylene using Mo2C/[B]-ZSM-5. ChemPhysChem 19:504–511PubMedCrossRefGoogle Scholar
  106. 106.
    Chen L, Lin L, Xu Z, Zhang T, Li X (1996) Promotional effect of Pt on non-oxidative methane transformation over Mo-HZSM-5 catalyst. Catal Lett 39:169–172CrossRefGoogle Scholar
  107. 107.
    Lu Y, Ma D, Xu Z, Tian Z, Bao X, Lin L (2001) A high coking-resistance catalyst for methane aromatization. Chem Commun 2048–2049Google Scholar
  108. 108.
    Shu Y, Ohnishi R, Ichikawa M (2003) Improved methane dehyfrocondensation reaction on HMCM-22 and HZSM-5 supported rhenium and molybdenum catalysts. Appl Catal A: General 252:315–329CrossRefGoogle Scholar
  109. 109.
    Ding X, Song Y, Lin W (2007) A new way to enhance the coke-resistance of Mo/HZSM-5 catalyst for methane dehydroaromatization. Catal Commun 8:539–542CrossRefGoogle Scholar
  110. 110.
    Kikuchi S, Kojima R, Ma H, Bai J, Ichikawa M (2006) Studies on Mo/HZSM-5 catalysts modified by bulky aminoalkyl-substituted silyl compounds for the selective methane to benzene (MTB) reaction. J Catal 242:349–356CrossRefGoogle Scholar
  111. 111.
    Ohnishi R, Liu S, Ding Q, Wang L, Ichikawa M (1999) Catalytic dehydration of methane with CO and CO2 toward benzene and naphthalene on Mo/HZSM-5 and Fe/Co-modified Mo/HZSM-5. J Catal 182:92–103CrossRefGoogle Scholar
  112. 112.
    Shu Y, Ohnishi R, Ichikawa M (2002) Pressurized dehydrocondensation of methane toward benzene and naphthalene on Mo/HZSM-5 catalyst: optimization of reaction parameters and promotion by CO2 addition. J Catal 206:134–142CrossRefGoogle Scholar
  113. 113.
    Bradford MCJ, Te M, Konduru M, Fuentes DX (2004) CH4-C2H6-CO2 conversion to aromatics over Mo/SiO2/H-ZSM-5. Appl Catal A: General 266:55–66CrossRefGoogle Scholar
  114. 114.
    Skutil K, Taniewski M (2006) Some technological aspects of methane aromatization (direct and via oxidative coupling). Fuel Process Technol 87:511–521CrossRefGoogle Scholar
  115. 115.
    Liu Z, Nutt MA, Iglesia E (2002) The effects of CO2, CO and H2 co-reactants on methane reactions catalyzed by Mo/H-ZSM-5. Catal Lett 81:271–279CrossRefGoogle Scholar
  116. 116.
    Yuan S, Li J, Hao Z, Feng Z, Xin Q, Ying P, Li C (1999) The effect of oxygen on the aromatization of methane over the MO/HZSM-5 catalyst. Catal Lett 63:73–77CrossRefGoogle Scholar
  117. 117.
    Ma H, Ohnishi R, Ichikawa M (2003) Highly stable performance of methane dehydroaromatization on Mo/HZSM-5 catalyst with a small amounts of H2 addition into methane feed. Catal Lett 89:143–146CrossRefGoogle Scholar
  118. 118.
    Liu S, Ohnishi R, Ichikawa M (2003) Promotional role of water added to methane feed on catalytic performance in the methane dehydroaromatization reaction on Mo/HZSM-5 catalyst. J Catal 220:57–65CrossRefGoogle Scholar
  119. 119.
    Zhang W, Xu S, Han X, Bao X (2012) In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach. Chem Soc Rev 41:192–210PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Tokyo Institute of TechnologyYokohamaJapan

Personalised recommendations