Advertisement

C–C Bond Formation via the Condensation of Methane in the Presence or Absence of Oxygen

Chapter
  • 299 Downloads

Abstract

The catalytic oxidative coupling of methane (OCM), which can be used to obtain ethylene, is a major challenge in heterogeneous catalysis. This chapter mainly discusses the active sites of OCM catalysts, their reaction mechanisms, and their catalytic performance under various oxidative reaction conditions, including the OCM reaction network. In the OCM reaction, CH4 is oxidatively converted to C2H6 and then C2H4. After activation of CH4 on catalysts such as metal oxides, the formation of C2H6 proceeds in a homogenous gas phase via a free-radical mechanism. Thus, C2H6 is produced mainly by the coupling of the surface-generated •CH3 radical (methyl radical) in the gas phase. The C2H4/C2H6 yields are limited by the secondary reaction of •CH3 radicals with the catalyst and reactor surfaces and the further oxidation of C2H4 on the catalyst surface and in the gas phase. The nature of the active sites and the reaction mechanism have been investigated. Reactive oxygen ions, such as O or O22−, are required for the activation of methane on catalysts. However, no feasible processes have resulted, despite a reasonable understanding of the elementary reactions in the OCM reaction. The non-oxidative coupling of methane (dehydrogenative coupling of methane) gives C2H4 and aromatic hydrocarbons at ~1000 K. Although the dehydrogenative coupling of methane is thermodynamically disadvantageous due to the large positive change in free energy, over-oxidation does not occur, and CO and CO2 are not formed. The catalytic performance of supported Fe catalysts, such as SiO2-supported Fe, are discussed, along with their catalytic properties.

Keywords

Oxidative methane coupling Methyl radical Oxygen surface species Homogeneous and heterogeneous processes Non-oxidative methane coupling 

References

  1. 1.
    Mitchell LL, Waghorne RH (1980) Catalyst forb the conversion of relatively low molecular weight hydrocarbons to higher molecular weight hydrocarbons and the regeneration of the catalysts. US Patent 4205194, 1980Google Scholar
  2. 2.
    Fang T, Yeh CT (1981) Interaction of methane with ThO2/SiO2 surface at 1073 K. J Catal 69:227–229CrossRefGoogle Scholar
  3. 3.
    Keller GF, Bhasin MM (1982) Synthesis of ethylene via oxidative coupling of methane: determination of active catalysts. J Catal 73:9–19CrossRefGoogle Scholar
  4. 4.
    Lee JS, Oyama ST (1988) Oxidative coupling of methane to higher hydrocarbons. Catal Rev -Sci Eng 30:249–280CrossRefGoogle Scholar
  5. 5.
    Amenomiya Y, Briss VI, Goledzinouski M, Galuszka J, Sanger AR (1990) Conversion of methane by oxidative coupling. Catal Rev -Sci Eng 32:163–227CrossRefGoogle Scholar
  6. 6.
    Zavyalova U, Holena M, Schlög R, Baerns M (2011) Statistical analysis of past catalytic data on oxidative methane coupling for new insight into the composition of high-performance catalysts. ChemCatChem 3:1935–1947CrossRefGoogle Scholar
  7. 7.
    Kondratenko EV, Peppel T, Seeburg D, Kondratenko VA, Kalevaru N, Martin A, Wohlrab S (2017) Methane conversion into different hydrocarbons or oxygenates: current status and future prospective in catalyst development and reactor operation. Catal Sci Technol 7:366–381CrossRefGoogle Scholar
  8. 8.
    Driscoll DJ, Martir W, Wang JX, Lunsford JH (1985) Formation of gas-phase methyl radical over MgO. J Am Chem Soc 107:58–63CrossRefGoogle Scholar
  9. 9.
    Luo L, Tang X, Wang W, Wang Y, Sun S, Qi F, Huang W (2013) Methyl radical in oxidative coupling of methane directly confirmed by Synchrotron VUV Photoionization mass spectroscopy. Scientific Reports  https://doi.org/10.1038/serp01625, 3, 1625
  10. 10.
    Wolf EE (2014) Methane to light hydrocarbons via oxidative methane coupling: lessons from the past to search for a selective heterogeneous catalyst. J Phys Chem Lett 5:986–988PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Parishan S, Nowicka E, Fleischer V, Schulz C, Colmenares MG, Rosowski F, Schomäcker R (2018) Investing into consecutive reaction of ethane and ethylene under the OCM reaction conditions over MnxOy–Na2WO4/SiO2. Catal Lett 148:1659–1675CrossRefGoogle Scholar
  12. 12.
    Tang Y, Lunsford JH (1991) Mechanistic and kinetic studies of the reactions of gas-phase methyl radical with metal oxides. J Am Chem Soc 113:4741–4746CrossRefGoogle Scholar
  13. 13.
    Lunsford JH (1995) The catalytic oxidative coupling of methane. Angew Chem Int Engl 34:970–980CrossRefGoogle Scholar
  14. 14.
    Dubois JL, Cameron CJ (1990) Common features of oxidative coupling of methane co-feed catalysts. Appl Catal 67:49–71CrossRefGoogle Scholar
  15. 15.
    Yan QJ, Wang Y, Jin YS, Chen Y (1992) Methane oxidative coupling over Na2WO4/SiO2. Catal Lett 13:221–228CrossRefGoogle Scholar
  16. 16.
    Driscoll DJ, Lunsford JH (1985) Gas-phase radical formation during the reaction of methane, ethane, ethylene and propylene over selected oxide catalysts. J Phys Chem 89:4415–4418CrossRefGoogle Scholar
  17. 17.
    Feng Y, Niiranen J, Gutman D (1991) Kinetics studies of the catalytic oxidation of methane, 1. Methyl radical production on 1% Sr/La2O3. J Phys Chem 95:6558–6563CrossRefGoogle Scholar
  18. 18.
    Feng Y, Niiranen J, Gutman D (1991) Kinetics studies of the catalytic oxidation of methane, 2. Methyl radical recombination and ethane formation over 1% Sr/La2O3. J Phys Chem 95:6564–6568CrossRefGoogle Scholar
  19. 19.
    Campbell KD, Lunsford JH (1988) Contribution of gas-phase radical coupling in the catalytic oxidation of methane. J Phys Chem 92:5792–5796CrossRefGoogle Scholar
  20. 20.
    Tong Y, Rosynek MP, Lunsford JH (1989) Secondary reactions of methyl radicals with lanthanide oxides: their role in the selective oxidation of methane. J Phys Chem 93:2896–2898CrossRefGoogle Scholar
  21. 21.
    Xu M, Lunsford JH (1991) Effect of temperature on methyl radical generation over Sr/La2O3 catalysts. Catal Lett 11:295–300CrossRefGoogle Scholar
  22. 22.
    Tong Y, Lunsford JH (1990) Gas-phase coupling of methyl radicals during the partial oxidation of methane over transition metal oxide catalysts. J Chem Soc Chem Commun 11:792–793CrossRefGoogle Scholar
  23. 23.
    Zhang HS, Wang JX, Driscoll DJ, Lunsford JH (1988) Activation and oxidative dimerization of methane over lithium-promoted zinc oxide. J Catal 112:366–374CrossRefGoogle Scholar
  24. 24.
    Lin CH, Campbell KD, Wang JX, Lunsford JH (1986) Oxidative dimerization of methane over lanthanum oxide. J Phys Chem 90:534–537CrossRefGoogle Scholar
  25. 25.
    Campbell D, Zhang H, Lunsford JH (1988) Methane activation by the lanthanide oxides. J Phys Chem 92:750–753CrossRefGoogle Scholar
  26. 26.
    Campbell KD, Morales E, Lunsford JH (1987) Gas-phase coupling of methyl radical during the catalytic partial oxidation of methane. J Am Chem Soc 109:7900–7901CrossRefGoogle Scholar
  27. 27.
    Ito T, Wang JX, Lin CH, Lunsford JH (1985) Oxidative dimerization of methane over lithium-promoted magnesium oxide catalyst. J Am Chem Soc 107:5062–5068CrossRefGoogle Scholar
  28. 28.
    Chen Y, Tohver HT, Narayan J, Abraham MM (1977) High-temperature and ionization-induced effect in lithium-doped MgO single crystals. Phys Rev B 16:5535–5542CrossRefGoogle Scholar
  29. 29.
    Olson DN, Orera VM, Chen Y, Abraham MM (1980) Thermally generated [Li]0 center in CaO. Phys Rev B 21:1258–1263CrossRefGoogle Scholar
  30. 30.
    Schirmer OF (1971) Trapped-hole center containing lithium in MgO, CaO and SrO. J Phys Chem Solid 32:499–509CrossRefGoogle Scholar
  31. 31.
    Lin TH, Ito T, Wang JX, Lunsford JH (1987) Oxidative dimerization of methane over magnesium and calcium oxide catalysts promoted with Group IA ions: the role of M+O centers. J Am Chem Soc 109:4808–4810CrossRefGoogle Scholar
  32. 32.
    Lin TH, Wang JX, Lunsford JH (1988) Oxidative dimerization of methane over sodium-promoted calcium oxide. J Catal 111:302–316CrossRefGoogle Scholar
  33. 33.
    Otsuka K, Said AA, Jinno K, Komatsu T (1987) Peroxide anions as possible active species in oxidative coupling of methane. Chem Lett 16:77–80CrossRefGoogle Scholar
  34. 34.
    Otsuka K, Murakami Y, Wada Y, Said AA, Morikawa A (1990) Oxidative coupling of methane, ethane, and propane with sodium peroxide at low temperatures. J Catal 121:122–130CrossRefGoogle Scholar
  35. 35.
    Sinev MY, Korchak VN, Krylov OV (1986) Highly selective formation of ethane in the reduction barium peroxide by methane. Kinet Katal 27:1274Google Scholar
  36. 36.
    Otsuka K, Jinno K (1986) Kinetic studies on partial oxidation of methane over samarium oxides. Inorg Chim Acta 121:237–241CrossRefGoogle Scholar
  37. 37.
    Kharas KCC, Lunsford JH (1989) Catalytic partial oxidation of methane over barium metaplumbate BaPBO3: possible involvement of peroxide ion. J Am Chem Soc 111:2336–2337CrossRefGoogle Scholar
  38. 38.
    Lunsford JH, Yang X, Haller K, Laane MJG, Knözinger H (1993) In situ Raman spectroscopy of peroxide ions on barium/magnesium oxide catalysts. J Phys Chem 97:13810–13813CrossRefGoogle Scholar
  39. 39.
    Dissanayake D, Lunsford JH, Rosynek MP (1993) Oxidative coupling of methane over oxide-supported barium catalysts. J Catal 143:286–298CrossRefGoogle Scholar
  40. 40.
    Mestl G, Knözinger H, Lunsford JH (1993) High temperature in situ Raman spectroscopy of working oxidative coupling of catalysts. Ber Bunsen-Ges Phys Chem 97:319–321CrossRefGoogle Scholar
  41. 41.
    Au CT, He H, Lai SY, Ng CF (1996) The oxidative coupling of methane over BaCO3/LaOBr-catalysts of high ethylene yields. J Catal 163:399–408CrossRefGoogle Scholar
  42. 42.
    Wang JX, Lunsford JH (1986) Evidence for the thermal generation of superoxide ions on La2O3. J Phys Chem 90:3890–3891CrossRefGoogle Scholar
  43. 43.
    Louis C, Chang TL, Kermarec M, Van TL, Tatibouët J, Che M (1992) EPR study of the stability and the role of the O2 species on La2O3 in the oxidative coupling of methane. Catal Today 13:283–289CrossRefGoogle Scholar
  44. 44.
    Yang T, Feng L, Shen S (1994) Oxygen species on the surface of La2O3/CaO and its role in the oxidative coupling of methane. J Catal 145:384–389CrossRefGoogle Scholar
  45. 45.
    Iwamoto M, Lunsford JH (1980) Surface reactions of oxygen ions. 5. Oxidation of alkanes and alkenes by O2 on magnesium oxide. J Phys Chem 84:3079–3084CrossRefGoogle Scholar
  46. 46.
    Voskrenskaya EN, Roguleva VG, Anshits AG (1995) Oxidant activation over structural defects of oxide catalyst in oxidation of methane coupling. Catal Rev -Sci Eng 37:101–143CrossRefGoogle Scholar
  47. 47.
    Takita Y, Lunsford JH (1979) Surface reactions of oxygen ions. 3. Oxidation of alkanes by O3 on magnesium oxide. J Phys Chem 83:683–688CrossRefGoogle Scholar
  48. 48.
    Takita Y, Iwamoto M, Lunsford JH (1980) Surface reactions of oxygen ions. 4. Oxidation of alkanes by O3 on magnesium oxide. J Phys Chem 84:1710–1712CrossRefGoogle Scholar
  49. 49.
    Oliva C, Bonoldi L, Cappelli S, Fabbrini L, Rossetti I, Forai L (2005) Effect of preparation parameters on SrTiO(3 ± δ) catalyst for the flameless combustion of methane. J Mol Catal A: Chemical 226:33–40CrossRefGoogle Scholar
  50. 50.
    Shvets VA, Vorotyntsev VM, Kazanskii VB (1969) ESR spectra of surface complexes formed during the adsorption of oxygen on vanadium pentoxide deposited silica gel. Kinet Katal 10:356–363Google Scholar
  51. 51.
    Kazanskii VB (1977) Possible mechanism of heterogeneous chain generation with the preparation of O surface radical during catalytic oxidation on oxide. Kinet Katal 18:43–54Google Scholar
  52. 52.
    Sofranko JA, Leonard JJ, Jones CA (1987) The oxidative conversion of methane to higher hydrocarbons. J Catal 103:302–310CrossRefGoogle Scholar
  53. 53.
    Jones CA, Leonard JJ, Sofranko JA (1987) The oxidative conversion of methane to higher hydrocarbons over alkali-promoted Mn/SiO2. J Catal 103:311–319CrossRefGoogle Scholar
  54. 54.
    Sofranko JA, Leonard JJ, Jones CA, Gaffney AM, Withers HP (1988) Catalytic oxidative coupling of methane over sodium-promoted Mn/SiO2 and Mn/MgO. Catal Today 3:127–135CrossRefGoogle Scholar
  55. 55.
    Fang X, Li S, Lin J, Chu Y (1992) Oxidative coupling of methane on tungsten-manganese catalysts. Fenzi Cuihua 6:427–433Google Scholar
  56. 56.
    Fang X, Li S, Lin J, Gu J, Yan D (1992) Preparation and characterization of tungsten-manganese catalysts for oxidative coupling of methane. Fenzi Cuihua 6:255–262Google Scholar
  57. 57.
    Jiang Z, Fang X, Yu C, Li S, He J, Luo X (1992) Manganese (III) oxide-sodium tungstate (Na2WO4)/silicon dioxide catalyst for oxidative coupling of methane. I. Surface dispel son state and oxide/support interaction. Fenzi Cuihua 6:477–480Google Scholar
  58. 58.
    Jiang ZC, Yu CJ, Fang XP, Li SB, Wang HL (1993) Oxide/support interaction and surface reconstruction in the Na2WO4/SiO2 system. J Phys Chem 97:12870–12875CrossRefGoogle Scholar
  59. 59.
    Ji S, Xiao TC, Li SB, Xu CZ, Hou RL, Coleman KS, Green MLH (2002) The relation ship between the structure and the performance of Na-W-Mn/SiO2 catalyst for the oxidative coupling of methane. Appl Catal A: General 225:271–284CrossRefGoogle Scholar
  60. 60.
    Yildiz M, Simm U, Otemba T, Aksu Y, Kailasam K, Thomas A, Schomäcker R, Arndt S (2014) Support material variation for the MnO-Na2WO4/SiO2 catalyst. Catal Today 228:5–14CrossRefGoogle Scholar
  61. 61.
    Sinev M, Ponomareva E, Sinev I, Lomonosov V, Gordienko Y, Fattakhova Z, Shaskin D (2019) Oxygen pathways in oxidative coupling of methane and related processes case study: NaWMn/SiO2 catalyst. Catal Tody 333:36–46CrossRefGoogle Scholar
  62. 62.
    Arndt S, Otremba T, Simon U, Yildiz M, Schubert H, Schomäcker R (2012) Mn-Na2WO4/SiO2 as catalysts for the oxidative coupling of methane. What is really known? Appl Catal A: General 425–426:53–61CrossRefGoogle Scholar
  63. 63.
    Fleisher V, Simon U, Parishan S, Colmenares MG, Görke O, Gurlo A, Riedel W, Thum L, Schmidt J, Risse T, Dinse KP, Schomäcker R (2018) Na2WO4/Mn/SiO2 catalyst composition in the oxidative coupling of methane by chemical looping experiments. J Catal 360:102–117CrossRefGoogle Scholar
  64. 64.
    Lomonosov VI, Gordienko YA, Sinev MY, Rogov VA, Sadykov VA (2018) Thermochemical properties of the lattice oxygen in W, Mn-containing mixed oxide catalysts for the oxidative coupling of methane. Russ J Phys Chem A 92:430–437CrossRefGoogle Scholar
  65. 65.
    Gu S, Oh HS, Choi JW, Jae J, Ghoi J, Ha JM (2018) Effects of metal or metal oxide additives on oxidative coupling of methane using Na2WO4/SiO2 catalysts: reducibility of metal additives to manipulate the catalytic activity. Appl Catal A: General 562:114–119CrossRefGoogle Scholar
  66. 66.
    Riedel W, Thum L, Möser J, Fleische V, Simon U, Siemensmeyer K, Schnegg A, Schomäcker R, Risse T, Dinse KP (2018) Magnetic properties of reduced and reoxidized Mn-–Na2WO4/SiO2: a catalyst for oxidative coupling of methane (OCM). J Phys Chem C 112:22605–22614CrossRefGoogle Scholar
  67. 67.
    Ismagilov IZ, Matus EV, Kuznetsov VV, Kerzhentsev MA, Yashnik SA, Larina TV, Prosvirin IP, Navarro RM, Fierro JLG, Gerritsen G, Abbennuis HCL, Ismagilov ZR (2016) Effect of preparation mode on the properties of Mn-Na-W/SiO2 catalyst for oxidative coupling of methane: conventional methods vs. post nanotechnology. Eurasian Chem-Technol J 18(2):93–110CrossRefGoogle Scholar
  68. 68.
    Shubin A, Zilberberg I, Ismagilov I, Matus E, Kerzhentsev M, Ismagilov Z (2018) Hydrogen abstraction from methane on cristobalite supported W and Mn oxo complexes: a DFT study. J Mol Catal 445:307–315CrossRefGoogle Scholar
  69. 69.
    Ekstrom A, Lapszewicz JA, Campbell I (1989) Origin of the low limits in the higher hydrocarbons yields in the oxidative coupling reaction methane. Appl Catal 56:L29–L34CrossRefGoogle Scholar
  70. 70.
    Korf SJ, Roos JA, Derksen JWHC, Vreeman JA, Van Ommen JG, Ross JRH (1990) Oxidative coupling of methane over Ba/CaO catalysts. A comparison with Li/MgO. Appl Catal 59:291–309CrossRefGoogle Scholar
  71. 71.
    Otsuka K, Jinno K, Morikawa A (1986) Active and selective catalysts for synthesis of C2H6 and C2H4 via oxidative coupling of methane. J Catal 100:353–359CrossRefGoogle Scholar
  72. 72.
    Shi C, Rosynek MP, Lunsford JH (1994) Origin of carbon oxides during the oxidative coupling of methane. J Phys Chem 98:8371–8376CrossRefGoogle Scholar
  73. 73.
    Nelson PF, Cant NW (1990) Oxidation of C2 hydrocarbon products during the oxidative coupling of methane over a Li/MgO catalyst. J Phys Chem 94:3756–3761CrossRefGoogle Scholar
  74. 74.
    Yaghobi N, Ghoreisky MHR (2008) Oxidative coupling of methane in a fixed bed reactor over perovskite catalysts: a simulation study using experimental kinetic model. J Nat Gas Chem 17:8–16CrossRefGoogle Scholar
  75. 75.
    Hiyoshi N, Ikeda T (2015) Oxidative coupling of methane over alkali chloride-Mn-Na2WO4/SiO2 catalysts: promoting effect of molten alkali chloride. Fuel Proc Technol 133:29–34CrossRefGoogle Scholar
  76. 76.
    Chua YT, Mohamed AR, Bhatia S (2008) Oxidative coupling of methane for production of ethylene over sodium-tungsten-manganese-supported-silica catalyst. Appl Catal A: General 343:142–148CrossRefGoogle Scholar
  77. 77.
    Hiyoshi N, Sato K (2016) Oxidative coupling of methane over Mn-Na2WO4/SiO2. Fuel Proc Technol 151:148–154CrossRefGoogle Scholar
  78. 78.
    Yaghobi N, Ghoreisky MHR (2008) Comparative study on the kinetic modeling if the oxidative coupling of methane in laboratory and bench scales. Chem Prod Proc Model 3:16/1–16/26.  https://doi.org/10.2202/1934-2659.1133
  79. 79.
    Hamidzadeh M, Sahebdelfar S, Jafari N, Mohammad R (2010) Method for preparing ceramic catalyst for converting methane to higher hydrocarbons by oxidative condensation (or coupling) of methane, Brit. UK Pat Appl (2010) GB 2469877AGoogle Scholar
  80. 80.
    Dedov AG, Nipan GD, Loktev AS, Tyunyaev AA, Ketsko AV, Pakhomenko KV, Miseev II (2011) Oxidative coupling of methane: influence of the phase composition of silica-based catalysts. App Catal A: General 406:1–21CrossRefGoogle Scholar
  81. 81.
    Fallah B, Falamaki C (2010) A new nano-(2Li2O/MgO) catalyst/porous α-alumina composite for the oxidative coupling of methane reaction. AIChE J 56:717–728Google Scholar
  82. 82.
    Albrecht M, Rodemerck U, Kondratenko E (2014) Higher hydrocarbon production through oxidative coupling of methane combined with hydrogenation of carbon oxide. Chem Ind Tech 86:1894–1900CrossRefGoogle Scholar
  83. 83.
    Nipan GD, Artukh VA, Yusupov VS, Loktev AS, Spesivtsev NA, Dedov AG, Moiseev II (2014) Pressure effect on the formation of active components of a catalyst for methane oxidative coupling. Doklady Phys Chem 455:60–63CrossRefGoogle Scholar
  84. 84.
    Wu J, Zghang M, Feng J, Ke L, Zhao Q, Xue W (2014) Preparation and application of supported catalysts for methane oxidation coupling for preparing lower olefins, Patent CN 103657640 A 20140326Google Scholar
  85. 85.
    Zheng W, Cheng D, Chen F, Zhan X (2010) Characterization and catalytic behavior of Na-W-Mn-Zr-S-Na2WO4/SiO2 prepared by different methods in oxidative coupling of methane. J Nat Gas Chem 19:515–521CrossRefGoogle Scholar
  86. 86.
    Ahari JS, Sadeghi MT (2011) Optimization of OCM reaction conditions over Na-W-Mn/SiO2 catalyst as elevated pressure. J Taiwan Inst Chem Eng 42:751–759CrossRefGoogle Scholar
  87. 87.
    Sadjadi S, Simon U, Godini HR, Görke O, Schomäcker R, Wonzny G (2015) Reactor material and gas dilution effect on the performance of miniplant-scale fluidized-bed reactors for oxidative coupling of methane. Chem Eng J 281:678–687CrossRefGoogle Scholar
  88. 88.
    Gholipour Z, Malekzadeh A, Hatami R, Mortazavi Y, Khodadadi A (2010) Oxidative coupling of methane over (Na2WO4 + Mn or Ce)/SiO2 catalysts: in situ measured of electrical conductivity. J Nat Gas Chem 19:35–42CrossRefGoogle Scholar
  89. 89.
    Ivanov DV, Isupova LA, Gerasinov EY, Isupova LA, Gerasimov EY, Dovlitova LS, Glazneva TS (2014) Oxidative methane coupling over Mg, AL, Ca, Ba, Pb-promoted SrTiO3 and SrTiO4: influence of surface composition and micro structure. App Catal A: General 485:10–19CrossRefGoogle Scholar
  90. 90.
    Fleischer V, Littlewood P, Parishan Schomäcker SR (2016) Chemical looping as reactor concept for the oxidative coupling of methane over Na2WO4/Mn/SiO2. Chem Eng J 306:646–654CrossRefGoogle Scholar
  91. 91.
    Ahari JS, Zarrinpashne S, Sadeghi MT (2013) Micro-kinetic modeling of OCM reactions over Mn/Na2WO4/SiO2 catalyst. Fuel Proc Technol 115:79–87CrossRefGoogle Scholar
  92. 92.
    Raouf F, Taghizadeh M, Yousefi M (2013) Activity enhancement of Li/MgO catalysts by lithium chloride as lithium precursor for the oxidative coupling of methane. Reac Kinet Mech Catal 110:373–385CrossRefGoogle Scholar
  93. 93.
    Vatani A, Jabbari E, Askarieh M, Torangi MA (2014) Kinetic modeling of oxidative coupling of methane over Li/MgO catalyst by genetic algorithm. J Nat Gas Sci Eng 20:347–356CrossRefGoogle Scholar
  94. 94.
    Godini HR, Gili A, Görke O, Arndt S, Simon U, Thomas A, Schomäcker R (2014) Sol-gel method for synthesis of Mn-Na2WO4/SiO2 catalyst for methane oxidative coupling. Catal Today 236:12–22CrossRefGoogle Scholar
  95. 95.
    Khodadadian M, Taghizadeh M, Hamidzadeh M (2011) Effect of various barium precursors and promotes on catalytic activity of Ba-Ti perovskite catalysts for oxidative coupling of methane. Fuel Proc Technol 92(6):1164–1168CrossRefGoogle Scholar
  96. 96.
    Shahri SMK, Pour AN (2010) Ce-promoted Mn/Na2WO4/SiO2 catalyst for oxidative coupling of methane at atmosphere. J Nat Gas Chem 19:47–53CrossRefGoogle Scholar
  97. 97.
    Wang W, Ji S, Pan D, Li C (2011) A novel particle/monolithic two-stage catalysts bed reactor and their catalytic performance for oxidative coupling of methane. Fuel Proc Technol 92:541–546CrossRefGoogle Scholar
  98. 98.
    Ghiasi M, Malekzadeh A, Hoseini H, Mortazavi Y, Khodadadi A, Talebizadeh T (2011) Kinetic study of oxidative coupling of methane over Mn and/or W promoted Na2WO4/SiO2 catalyst. J Nat Gas Chem 20:428–434CrossRefGoogle Scholar
  99. 99.
    Song J, Sun Y, Ba R, Huang S, Zhao Y, Zhang J, Sun Y, Zhu Y (2015) Monodisperse Sr-La2O3 hybrid nanofibers for oxidative coupling of methane of synthesize C2 hydrocarbons. Nanoscale 7:2260–2264PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Huang K, Chen FQ, Lü DW (2001) Artificial neural network-aided design of a multi-component catalyst for methane oxidative coupling. Appl Catal A: General 219:61–68CrossRefGoogle Scholar
  101. 101.
    Branco JB, Ferreira AC, do Rego AMB, Ferreira AM, Lopes G, Gasche TA (2014) Oxidative coupling of methane over KCl-LaCl3 eutectic molten salt catalyst. J Mol Liquids 191:100–106Google Scholar
  102. 102.
    Serres T, Aquino C, Minodatos C, Schuurman Y (2015) Influence of the composition texture of Mn-Na-W catalysts on the oxidative coupling of methane. App Catal A: General 504:509–518CrossRefGoogle Scholar
  103. 103.
    Baiya T, van Vegten N, Verel R, Jiang Y, Yulokov M, Kohn T, Jeschke G, Baiker A (2011) Sr-Al2O3 mixed oxide: a promising class of catalyst for oxidative coupling of methane. J Catal 281:241–253CrossRefGoogle Scholar
  104. 104.
    Ren S, Qin S, Zhu J, Peng X, Hu C (2010) New Co-La/SiO2 catalyst for the simultaneous production of C2H4 and syngas with Na2WO4/Mn/SiO2. Ind Eng Chem Res 49:2078–2083CrossRefGoogle Scholar
  105. 105.
    Ahari JS, Sadeghi MT, Zarrinpashne S (2011) Effects of operating parameters on oxidative coupling of methane over Na-W-Mn/SiO2 catalyst at elevated pressure. J Nat Gas Chem 20:204–213CrossRefGoogle Scholar
  106. 106.
    Malekzadeh A, Dalai AK, Khodadadi A, Mortzovi Y (2008) Structural features of Na2WO4-MOX/SiO2 catalyst in oxidative coupling of methane. Catal Commun 9:960–965CrossRefGoogle Scholar
  107. 107.
    Yildiz M, Aksu Y, Simom U, Othemba T, Kailasam K, Görke C, Rosowski F, Thomas A, Schomäcker R, Arndt S (2016) Silica material variation for MnXOY-Na2WO4/SiO2. Appl Catal A: General 525:168–179CrossRefGoogle Scholar
  108. 108.
    Noon D, Zohour B, Senkan S (2014) Oxidative coupling of methane with La2O3-CeO2 nanofiber fabrics: a reaction engineering study. J Nat Gas Sci Eng 18:406–411CrossRefGoogle Scholar
  109. 109.
    Gonçalves RLP, Muniz FC, Passos FB, Schmal M (2010) Promoting effect of Ce on the oxidative coupling of methane catalysts. Catal Lett 135:26–32CrossRefGoogle Scholar
  110. 110.
    Rane VH, Chaudhari ST, Choudhary VR (2010) Oxidative coupling of methane over La-promoted CaO Catalysts: influence of precursors ands catalyst preparation method. J Nat Gas Chem 19:25–30CrossRefGoogle Scholar
  111. 111.
    Daneshpayeh M, Khodadadi A, Mostoufi N, Mortazavi Y, Satudeh-Gharebagh R (2009) Kinetic modeling of oxidative coupling of methane over M/Na2WO4/SiO2 catalyst. Fuel Proc Technol 90:403–410CrossRefGoogle Scholar
  112. 112.
    Colmenres MG, Simon U, Yildiz M, Arndt S, Schomaecker R, Thomas T, Rosowski F, Gurlo A, Goerke O (2016) Oxidative coupling of methane on the Na2WO4-MnxOy catalyst: COK-12 as an inexpensive alternative to SBA-15. Catal Commun 85:75–78CrossRefGoogle Scholar
  113. 113.
    Dedov AG, Loktev AS, Tel’pukhoskaya NO, Parkhiomenko KV, Moiseev II (2008) Mesoporous amorphous rare earth silicates new catalysts of methane oxidative coupling. Doklady Phys Chem 422:253–255Google Scholar
  114. 114.
    Othman NH, Wu Z, Li K (2015) An oxygen permeable membrane micro reactor with an in-situ deposited Bi1.5Y0.3Sm0.2O3-δ catalyst for oxidative coupling of methane. J Membr Sci 488:182–193CrossRefGoogle Scholar
  115. 115.
    Bhatia S, Thien CY, Mohamed AR (2009) Oxidative coupling of methane (OCM) in a catalytic membrane reactor and comparison of its performance with other catalytic reactor. Chem Eng J 148:525–532CrossRefGoogle Scholar
  116. 116.
    Godini HR, Xiao S, Kim M, Holst N, Jaso S, Görke O, Steinbach J, Wozny G (2014) Experimental and model-based analysis of membrane reactor performance for methane oxidative coupling: effect of radial heat and mass transfer. J Ind Eng Chem 20:1993–2002CrossRefGoogle Scholar
  117. 117.
    Godini HR, Gili A, Görke O, Simon U, Hou K, Wozny G (2014) Performance analysis of a porous packed bed membrane reactor for oxidative coupling of methane: structural and operational characteristics. Energy Fuels 28:877–890CrossRefGoogle Scholar
  118. 118.
    Olivier L, Haag S, Mirocatos C, van Veen AC (2009) Oxidative coupling of methane using catalyst modified dense perovskite membrane reactor. Catal Today 142:34–41CrossRefGoogle Scholar
  119. 119.
    Othman NH, Wu Z, Li K (2014) A micro-structured La0.6Sr0.4Co0.8Fe0.2O3-δ hollow fiber membrane reactor for oxidative coupling of methane. J Membr Sci 468:31–41CrossRefGoogle Scholar
  120. 120.
    Choudhary TV, Asyolu E, Goodman W (2003) Non oxidative activation of methane. Catal Rev 45:151–203CrossRefGoogle Scholar
  121. 121.
    Belgued M, Paréja P, Amariglio A, Amariglio H (1991) Conversion of methane into higher hydrocarbons on platinum. Nature 352:789–790CrossRefGoogle Scholar
  122. 122.
    Amariglio H, Paréja P, Amariglio A (1995) Periodic operation of catalysts s a means of overcoming a thermodynamic constraint. The case of the methane homologation on metals. Catal Today 25:113–125CrossRefGoogle Scholar
  123. 123.
    Belgued M, Amariglio A, Paréja P, Amariglio H (1996) Oxygen-free conversion of methane to higher alkanes through an isothermal two-step reaction on platinum (EUROPT-1). I. Chemisorption of methane. J Catal 159:441–448CrossRefGoogle Scholar
  124. 124.
    Belgued M, Amariglio A, Paréja P, Amariglio H (1996) Oxygen-free conversion of methane to higher alkanes through an isothermal two-step reaction on platinum (EUROPT-1). II. Hydrogenation of the adspecies resulting from the chemisorption of methane. J Catal 159:449–457CrossRefGoogle Scholar
  125. 125.
    Belgued M, Amariglio A, Lefort L, Paréja P, Amariglio H (1996) Oxygen-free conversion of methane to higher alkanes through an isothermal two-step reaction on ruthenium. J Catal 161:282–291CrossRefGoogle Scholar
  126. 126.
    Holmen A, Olsvik O, Rokstad OA (1995) Pyrolysis of natural gas: Chemistry and process concepts. Fuel Proc Technol 42:249–267CrossRefGoogle Scholar
  127. 127.
    Guczi L, Sarma KV, Borlcó L (1997) Low-temperature methane activation under nonoxidative conditions over supported ruthenium-cobalt bimetallic catalysts. J Catal 167:495–502CrossRefGoogle Scholar
  128. 128.
    Choudhary TV, Goodman DW (2002) Methane activation on ruthenium: the nature of the surface intermediates. Top Catal 20:35–42CrossRefGoogle Scholar
  129. 129.
    Gerecker D, Motagamwala AH, Rivera-Dones KR, Miller JB, Huber GW, Marikakis M, Dumesic J (2017) Methane conversion to ethylene and aromatics on PtSn catalysts. ACS Catal 7:2088–2100CrossRefGoogle Scholar
  130. 130.
    Solmosi F, Csrényi J (1995) Enhanced formation of ethane in the conversion of methane over Cu-Rh/SiO2. Catal Lett 34:343–350CrossRefGoogle Scholar
  131. 131.
    Bazin D, Borkó L, Koppány Z, Stefler G, Sajó LI, Schay Z, Guczi L (2002) Re-Co/NaY and Re-Co/Al2O3 bimetallic catalysts: in situ EXAFS study and catalytic activity. Catal Lett 84:169–182CrossRefGoogle Scholar
  132. 132.
    Moya SF, Martins RL, Ota A, Kunkes EL, Behrens M, Schmal M (2012) Nanostructured supported palladium catalysts—non-oxidative methane coupling. Appl Catal A: General 411–412:105–113CrossRefGoogle Scholar
  133. 133.
    Moya SF, Martins RL, Schmal M (2011) Monodispersed and nanostructured Ni/SiO2 catalyst and its activity for non oxidative methane activation. Appl Catal A: General 396:159–169CrossRefGoogle Scholar
  134. 134.
    Lang SM, Bernhardt TM, Barnett RN, Landman U (2010) Methane activation and catalytic ethylene formation on free Au2+. Angew Chem Int Ed 49:980–983CrossRefGoogle Scholar
  135. 135.
    Koerts T, Deelene MJAG, van Santen RA (1992) Hydrocarbon formation from methane by a low-temperature two-step reaction sequence. J Catal 138:101–114CrossRefGoogle Scholar
  136. 136.
    Guczi L, Sarma KV, Borkó L (1996) Non-oxidative methane coupling over Co-Pt/NaY bimetallic catalysts. Catal Lett 39:43–47CrossRefGoogle Scholar
  137. 137.
    Guczi L, Sarma KV, Borkó L (1999) Studies on deuterium exchange in surface CHX species formed from methane over platinum. Ruthenium and cobalt under non-oxidative conditions. React Kinet Catal Lett 68:95–104CrossRefGoogle Scholar
  138. 138.
    Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X (2014) Direct non oxidative conversion of methane to ethylene, aromatics and hydrogen. Science 344:616–619PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Tokyo Institute of TechnologyYokohamaJapan

Personalised recommendations