Advertisement

Application of Biocatalysts for the Production of Methanol from Methane

Chapter

Abstract

Methane can be converted to methanol at atmospheric temperature and pressure by utilizing the isolated enzyme methane monooxygenase (MMO) or whole-cell methane-oxidizing bacteria as a biocatalyst. At present, methanol production using methane-oxidizing bacteria is more promising than using isolated MMO due to disadvantages such as the high cost of isolating MMO and the instability of MMO outside the bacterial cells. In this chapter, only methanol production using methane-oxidizing bacteria is discussed. To achieve extracellular accumulation of methanol when using methane-oxidizing bacteria, various reaction conditions must be optimized. First, the best inhibitor for methanol dehydrogenase should be determined. An inhibitor is required to prevent the dehydrogenation of methanol to formaldehyde by methanol dehydrogenase after the oxidation of methane to methanol by MMO. This inhibition is crucial, but results in a shortage of nicotinamide adenine dinucleotide (NADH), which is required as a cellular energy source for the synthesis of various organic compounds required for the metabolism and the replication of the bacterial cells, as well as the hydroxylation of methane. Therefore, both a methanol oxidation inhibitor and the optimum electron donor to supply energy to the bacterial cells must be identified. Additionally, to use methane-oxidizing bacteria as a biocatalyst, the bacteria must be cultured before the methane conversion reaction is started. Therefore, an understanding of bacterial methane metabolism is crucial to developing practical methanol production processes using whole-cell biocatalysts. In this chapter, the methane metabolism of methane-oxidizing bacteria is also reviewed. Subsequently, the development of methanol production processes using biocatalysts is described.

Keywords

Whole-cell methane-oxidizing bacteria Methane metabolism Culture and reaction condition 

References

  1. 1.
    Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187PubMedCrossRefGoogle Scholar
  2. 2.
    Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626PubMedCrossRefGoogle Scholar
  3. 3.
    Cui M, Ma A, Qi H, Zhuang X, Zhuang G (2015) Anaerobic oxidation of methane: an “active” microbial process. MicrobiologyOpen 4:1–11PubMedCrossRefGoogle Scholar
  4. 4.
    Fei Q, Guarnieri MT, Tao L, Laurens LM, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32:596–614PubMedCrossRefGoogle Scholar
  5. 5.
    Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570PubMedCrossRefGoogle Scholar
  6. 6.
    Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B (2010) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465:606–608PubMedCrossRefGoogle Scholar
  7. 7.
    Mehta PK, Mishra S, Ghose TK (1987) Methanol accumulation by resting cells of Methylosinus trichosporium (I). J Gen Appl Microbiol 33:221–229CrossRefGoogle Scholar
  8. 8.
    Mehta PK, Ghose TK, Mishra S (1991) Methanol biosynthesis by covalently immobilized cells of Methylosinus trichosporium: batch and continuous studies. Biotechnol Bioeng 37:551–556PubMedCrossRefGoogle Scholar
  9. 9.
    Sugimori D, Takeguchi M, Okura I (1995) Biocatalytic methanol production from methane with Methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Biotechnol Lett 17:783–784CrossRefGoogle Scholar
  10. 10.
    Takeguchi M, Furuto T, Sugimori D, Okura I (1997) Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Appl Biochem Biotechnol 68:143–152CrossRefGoogle Scholar
  11. 11.
    Furuto T, Takeguchi M, Okura I (1999) Semicontinuous methanol biosynthesis by Methylosinus trichosporium OB3b. J Mol Catal A 144:257–261CrossRefGoogle Scholar
  12. 12.
    Lee SG, Goo JH, Kim HG, Oh JI, Kim YM, Kim SW (2004) Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol Lett 26:947–950PubMedCrossRefGoogle Scholar
  13. 13.
    Xin J, Cui J, Niu J, Hua S, Xia C, Li S, Zhu L (2004) Biosynthesis of methanol from CO2 and CH4 by methanotrophic bacteria. Biotechnol 3:67–71CrossRefGoogle Scholar
  14. 14.
    Markowska A, Michalkiewicz B (2009) Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b. Chem Papers 63:105–110CrossRefGoogle Scholar
  15. 15.
    Kim H, Han GGH, Kim SW (2010) Optimization of lab scale methanol production by Methylosinus trichosporium OB3b. Biotechnol Bioproc Eng 15:476–480CrossRefGoogle Scholar
  16. 16.
    Duan C, Luo M, Xing X (2011) High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour Technol 102:7349–7353PubMedCrossRefGoogle Scholar
  17. 17.
    Han JS, Ahn CM, Mahanty B, Kim CG (2013) Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil. Appl Biochem Biotechnol 171:1487–1499PubMedCrossRefGoogle Scholar
  18. 18.
    Pen N, Soussan L, Belleville MP, Sanchez J, Charmette C, Paolucci-Jeanjean D (2014) An innovative membrane bioreactor for methane bio-hydroxylation. Bioresour Technol 174:42–52PubMedCrossRefGoogle Scholar
  19. 19.
    Hwang IY, Hur DH, Lee JH, Park CH, Chang IS, Lee JW, Lee EY (2015) Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. J Microbiol Biotechnol 25:375–380PubMedCrossRefGoogle Scholar
  20. 20.
    Yoo YS, Han JS, Ahn CM, Kim CG (2015) Comparative enzyme inhibitive methanol production by Methylosinus sporium from simulated biogas. Environ Technol 36:983–991PubMedCrossRefGoogle Scholar
  21. 21.
    Pen N, Soussan L, Belleville MP, Sanchez J, Paolucci-Jeanjean D (2016) Methane hydroxylation by Methylosinus trichosporium OB3b: monitoring the biocatalyst activity for methanol production optimization in an innovative membrane bioreactor. Biotechnol Bioprocess Eng 21:283–293CrossRefGoogle Scholar
  22. 22.
    Patel SKS, Jeong JH, Mehariya S, Otari SV, Madan B, Haw JR, Lee JK, Zhang L, Kim IW (2016) Production of methanol from methane by encapsulated Methylosinus sporium. J Microbiol Biotechnol 26:2098–2105PubMedCrossRefGoogle Scholar
  23. 23.
    Patel SKS, Mardina P, Kim D, Kim SY, Kalia VC, Kim IW, Lee JK (2016) Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas. Bioresour Technol 218:202–208PubMedCrossRefGoogle Scholar
  24. 24.
    Patel SKS, Mardina P, Kim SY, Lee JK, Kim IW (2016) Biological methanol production by a Type II methanotroph Methylocystis bryophila. J Microbiol Biotechnol 26:717–724PubMedCrossRefGoogle Scholar
  25. 25.
    Mardina P, Li J, Patel SK, Kim IW, Lee JK, Selvaraj C (2016) Potential of immobilized whole-cell Methylocella tundrae as a biocatalyst for methanol production from methane. J Microbiol Biotechnol 26:1234–1241PubMedCrossRefGoogle Scholar
  26. 26.
    Sheets P, Ge X, Li YF, Yu Z, Li Y (2016) Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate. Bioresour Technol 201:50–57PubMedCrossRefGoogle Scholar
  27. 27.
    Patel SKS, Singh RK, Kumar A, Jeong JH, Jeong SH, Kalia VC, Kim IW, Lee JK (2017) Biological methanol production by immobilized Methylocella tundrae using simulated bio-hythane as a feed. Bioresour Technol 241:922–927PubMedCrossRefGoogle Scholar
  28. 28.
    Patel SKS, Jeon MS, Gupta RK, Jeon Y, Kalia VC, Kim SC, Cho BK, Kim DR, Lee JK (2019) Hierarchical macroporous particles for efficient whole-cell immobilization: application in bioconversion of greenhouse gases to methanol. ACS Appl Mater Interfaces 11:18968–18977PubMedCrossRefGoogle Scholar
  29. 29.
    Patel SKS, Kumar V, Mardina P, Li J, Lestari R, Kalia VC, Lee JK (2018) Methanol production from simulated biogas mixtures by co-immobilized Methylomonas methanica and Methylocella tundrae. Bioresour Technol 263:25–32PubMedCrossRefGoogle Scholar
  30. 30.
    Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Rasigraf O, Kool DM, Jetten MSM, Sinninghe Damsté JS, Ettwig KF (2014) Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 80:2451–2460PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Baxter NJ, Hirt RP, Bodrossy L, Kovacs KL, Embley MT, Prosser JI, Murrell CJ (2002) The ribulose-1,5-bisphosphate carboxylase/oxygenase gene cluster of Methylococcus capsulatus (Bath). Arch Microbiol 177:279–289PubMedCrossRefGoogle Scholar
  33. 33.
    Taylor SC, Dalton H, Dow CS (1981) Ribulose-1,5-bisphosphate carboxylase/oxygenase and carbon assimilation in Methylococcus capsulatus (Bath). J Gen Mcrobiol 122:89–94Google Scholar
  34. 34.
    Chen Y, Crombie A, Rahman MT, Dedysh SN, Liesack W, Stott MB, Alam M, Theisen AR, Murrell JC, Dunfield PF (2010) Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacteriol 192:3840–3841PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM (2002) Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261PubMedCrossRefGoogle Scholar
  36. 36.
    Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61:2456–2463PubMedCrossRefGoogle Scholar
  37. 37.
    Ward N, Larsen Ø, Sakwa J, Bruseth L, Khouri H, Durkin AS, Dimitrov G, Jiang L, Scanlan D, Kang KH, Lewis M, Nelson KE, Methé B, Wu M, Heidelberg JF, Paulsen IT, Fouts D, Ravel J, Tettelin H, Ren Q, Read T, DeBoy RT, Seshadri R, Salzberg SL, Jensen HB, Birkeland NK, Nelson WC, Dodson RJ, Grindhaug SH, Holt I, Eidhammer I, Jonasen I, Vanaken S, Utterback T, Feldblyum TV, Fraser CM, Lillehaug JR, Eisen JA (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2:e303PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218PubMedCrossRefGoogle Scholar
  39. 39.
    Anthony C (1986) Bacterial oxidation of methane and methanol. Adv Microb Physiol 27:113–210PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Peyraud R, Kiefer P, Christen P, Massou S, Portais JC, Vorholt JA (2009) Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics. Proc Natl Acad Sci USA 106:4846–4851PubMedCrossRefGoogle Scholar
  41. 41.
    Matsen JB, Yang S, Stein LY, Beck D, Kalyuzhnaya MG (2013) Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I. Transcriptomic study. Front Microbiol Chem 4:1–16Google Scholar
  42. 42.
    Yang S, Matsen JB, Konopka M, Green-Saxena A, Clubb J, Sadilek M, Orphan VJ, Beck D, Kalyuzhnaya MG (2013) Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part II. Metabolomics and 13C-labeling study. Front Microbiol 4:70Google Scholar
  43. 43.
    Vekeman B, Kerckhof FM, Cremers G, de Vos P, Vandamme P, Boon N, Op den Camp HJM, Heylen K (2016) New Methyloceanibacter diversity from North Sea sediments includes methanotroph containing solely the soluble methane monooxygenase. Environ Microbiol 18:4523–4536PubMedCrossRefGoogle Scholar
  44. 44.
    Knief C (2015) Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol 6:1346PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Krause S, van Bodegom PM, Cornwell WK, Bodelier PL (2014) Weak phylogenetic signal in physiological traits of methane-oxidizing bacteria. J Evol Biol 27:1240–1247PubMedCrossRefGoogle Scholar
  46. 46.
    Deutzmann JS, Wörner S, Schink B (2011) Activity and diversity of methanotrophic bacteria at methane seeps in eastern Lake Constance sediments. Appl Environ Microbiol 77:2573–2581PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Dumont MG, Pommerenke B, Casper P, Conrad R (2011) DNA-, rRNA- and mRNA-based stable isotope probing of aerobic methanotrophs in lake sediment. Environ Microbiol 13:1153–1167PubMedCrossRefGoogle Scholar
  48. 48.
    Siljanen HM, Saari A, Krause S, Lensu A, Abell GC, Bodrossy L, Bodelier PL, Martikainen PJ (2011) Hydrology is reflected in the functioning and community composition of methanotrophs in the littoral wetland of a boreal lake. FEMS Microbiol Ecol 75:430–445PubMedCrossRefGoogle Scholar
  49. 49.
    Lüke C, Frenzel P (2011) Potential of pmoA amplicon pyrosequencing for methanotroph diversity studies. Appl Environ Microbiol 77:6305–6309PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Henneberger R, Lüke C, Mosberger L, Schroth MH (2012) Structure and function of methanotrophic communities in a landfill-cover soil. FEMS Microbiol Ecol 81:52–65; Dumont MG, Lüke C, Deng YC, Frenzel P (2014) Classification of pmoA amplicon pyrosequences using BLAST and the lowest common ancestor method in MEGAN. Front Microbiol 5:e34Google Scholar
  51. 51.
    Deng Y, Cui X, Lüke C, Dumont MG (2013) Aerobic methanotroph diversity in Riganqiao peatlands on the Qinghai-Tibetan Plateau. Environ Microbiol Rep 5:566–574PubMedCrossRefGoogle Scholar
  52. 52.
    Dunfield PF, Yuryev A, Senin P, Smirnova AV, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PL, Liesack W, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882PubMedCrossRefGoogle Scholar
  53. 53.
    Islam T, Jensen S, Reigstad LJ (2008) Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belong-ing to the Verrucomicrobia phylum. Proc Natl Acad Sci USA 105:300–304PubMedCrossRefGoogle Scholar
  54. 54.
    van Teeseling MC, Pol A, Harhangi HR, van der Zwart S, Jetten MS, Op den Camp HJ, van Niftrik L (2014) Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl Environ Microbiol 80:6782–6791PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG, Jetten MS, Op den Camp HJ (2011) Autotrophic methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 193:4438–4446PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74:1305–1315PubMedCrossRefGoogle Scholar
  57. 57.
    Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187(13, July):4665–4670Google Scholar
  58. 58.
    Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58:682–692PubMedCrossRefGoogle Scholar
  59. 59.
    Crombie AT, Murrell JC (2014) Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 510:148–151PubMedCrossRefGoogle Scholar
  60. 60.
    Belova SE, Baani M, Suzina NE, Bodelier PL, Liesack W, Dedysh SN (2011) Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ Microbiol Rep 3:36–46PubMedCrossRefGoogle Scholar
  61. 61.
    Im J, Lee SW, Yoon S, Dispirito AA, Semrau JD (2011) Characterization of a novel facultative Methylocystis species capable of growth on methane, acetate and ethanol. Environ Microbiol Rep 3:174–181PubMedCrossRefGoogle Scholar
  62. 62.
    Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 3:955–969CrossRefGoogle Scholar
  63. 63.
    Stanley SH, Prior SD, Leak DJ, Dalton H (1983) Copper stress underlies the fundamental change in intracellular location of methane monooxygenase in methane-oxidising organisms: studies in batch and continuous cultures. Biotechnol Lett 5:487–492CrossRefGoogle Scholar
  64. 64.
    Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173:325–332PubMedCrossRefGoogle Scholar
  65. 65.
    Csáki R, Bodrossy L, Klem J, Murrell JC, Kovács KL (2003) Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): cloning, sequencing and mutational analysis. Microbiology 149:1785–1795PubMedCrossRefGoogle Scholar
  66. 66.
    Scanlan J, Dumont MG, Murrell JC (2009) Involvement of MmoR and MmoG in the transcriptional activation of soluble methane monooxygenase genes in Methylosinus trichosporium OB3b. FEMS Microbiol Lett 301:181–187PubMedCrossRefGoogle Scholar
  67. 67.
    Semrau JD, Jagadevan S, DiSpirito AA, Khalifa A, Scanlan J, Bergman BH, Freemeier BC, Baral BS, Bandow NL, Vorobev A, Haft DH, Vuilleumier S, Murrell JC (2013) Methanobactin and MmoD work in concert to act as the ‘copper-switch’ in methanotrophs. Environ Microbiol 15:3077–3086PubMedGoogle Scholar
  68. 68.
    Kenney GE, Sadek M, Rosenzweig AC (2016) Copper-responsive gene expression in the methanotroph Methylosinus trichosporium OB3b. Metallomics 8:931–940PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Dispirito AA, Semrau J, Murrell JC, Vuileumier S (2016) Methanobactin and the link between copper and bacterial methane oxidation. Microbiol Mol Biol Rev 80:387–409PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Patel RN, Horse DS (1971) Physiological studies of methane and methanol-oxidising bacteria: oxidation of C-1 compounds by Methylococcus capsulatus. J Bacteriol 107:187–192PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Stiring DI, Dalton H (1978) Purification and properties of an NAD(P)+ -linked formaldehyde dehydrogenase from Methylococcus capsulatus (Bath). JGen Microbiol 107:19–29Google Scholar
  72. 72.
    Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531PubMedCrossRefGoogle Scholar
  73. 73.
    Myronova N, Kitmitto A, Collins RF, Miyaji A, Dalton H (2006) Three-dimensional structure determination of a protein supercomplex that oxidizes methane to formaldehyde in Methylococcus capsulatus (Bath). Biochemistry 45:11905–11914PubMedCrossRefGoogle Scholar
  74. 74.
    Culpepper MA, Rosenzweig AC (2014) Structure and protein-protein interactions of methanol dehydrogenase from Methylococcus capsulatus (Bath). Biochemistry 53:6211–6219PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Kalyuzhnaya MG, Puri AW, Lidstrom ME (2015) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152PubMedCrossRefGoogle Scholar
  76. 76.
    Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–229PubMedCrossRefGoogle Scholar
  77. 77.
    Tonge GM, Harrison DE, Knowles CJ, Higgins IJ (1975) Properties and partial purification of the methane-oxidising enzyme system from Methylosinus trichosporium. FEBS Lett 58:293–299PubMedCrossRefGoogle Scholar
  78. 78.
    Chistoserdova L, Lidstrom ME (2013) Aerobic methylotrophic prokaryotes. In: Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E (eds) The prokaryotes, 4th edn. Springer, New York, pp 267–285CrossRefGoogle Scholar
  79. 79.
    Smith TJ, Trotsenko YA, Murrell JC (2010) Physiology and biochemistry of the aerobic methane oxidizing bacteria. In: Timmis KN (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg, pp 765–779Google Scholar
  80. 80.
    Zahn JA, Bergmann DJ, Boyd JM, Kunz RC, DiSpirito AA (2001) Membrane-associated quinoprotein formaldehyde dehydrogenase from Methylococcus capsulatus Bath. J Bacteriol 183:6832–6840PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Jollie DR, Lipscomb JD (1991) Formate dehydrogenase from Methylosinus tricho-sporium OB3b. Purification and spectroscopic characterization of the cofactors. J Biol Chem 266:21853–21863PubMedGoogle Scholar
  83. 83.
    Ferry JG (1990) Formate dehydrogenase. FEMS Microbiol Rev 7:377–382PubMedCrossRefGoogle Scholar
  84. 84.
    Jollie DR, Lipscomb JD (1990) Formate dehydrogenase from Methylosinus trichosporium OB3b. Methods Enzymol 188:331–334PubMedCrossRefGoogle Scholar
  85. 85.
    Yoch DC, Chen YP, Hardin MG (1990) Formate dehydrogenase from the methane oxidizer Methylosinus trichosporium OB3b. J Bacteriol 72:4456–4463CrossRefGoogle Scholar
  86. 86.
    Quayle JR (1972) The metabolism of one-carbon compounds by micro-organisms. Adv Microbiol Physiol 7:119–203CrossRefGoogle Scholar
  87. 87.
    Hwang IY, Lee SH, Choi YS, Park SJ, Na JG, Chang IS, Kim C, Kim HC, Kim YH, Lee JW, Lee EY (2014) Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries. J Microbiol Biotechnol 24:1597–1605PubMedCrossRefGoogle Scholar
  88. 88.
    Karthikeyan OP, Chidambarampadmavathy K, Nadarajan S, Lee PK, Heimann K (2015) Effect of CH4/O2 ratio on fatty acid profile and polyhydroxybutyrate content in a heterotrophic-methanotrophic consortium. Chemosphere 141:235–242PubMedCrossRefGoogle Scholar
  89. 89.
    Khmelenina VN, Rozova N, But CY, Mustakhimov II, Reshetnikov AS, Beschastnyi AP, Trotsenko YA (2015) Biosynthesis of secondary metabolites in methanotrophs: biochemical and genetic aspects. Prikl Biokhim Mikrobiol 51:140–150PubMedGoogle Scholar
  90. 90.
    Crowther GJ, Kosály G, Lidstrom ME (2008) Formate as the Main Branch Point for Methylotrophic Metabolism in Methylobacterium extorquens AM1. J Bacteriol 190(14):5057–5062Google Scholar
  91. 91.
    Chidambarampadmavathy K, Karthik O, Heimann K (2015) Role of copper and iron in methane oxidation and bacterial biopolymer accumulation. Eng Life Sci 15:387–399CrossRefGoogle Scholar
  92. 92.
    Dedysh SN, Panikov NS, Tiedje JM (1998) Acidophilic methanotrophic communities from Sphagnum peat bogs. Appl Env Microbiol 64:922–929CrossRefGoogle Scholar
  93. 93.
    Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, den Camp HJMO (2007) Methanotrophy below pH1 by a new Verrucomicrobia species. Nature 450:874–U817PubMedCrossRefGoogle Scholar
  94. 94.
    Bowman JP, McCammon SA, Skerratt JH (1997) Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiol 143:1451–1459CrossRefGoogle Scholar
  95. 95.
    Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J System Evol Microbiol 55:1817–1826CrossRefGoogle Scholar
  96. 96.
    Kaluzhnaya M, Khmelenina V, Eshinimaev B, Suzina N, Nikitin D, Solonin A, Lin JL, McDonald I, Murrell JC, Trotsenko Y (2001) Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the Southeastern Transbaikal region and description of Methylomicrobium buryatense sp.nov. Systematic and Appl Microbiol 24:166–176CrossRefGoogle Scholar
  97. 97.
    Andersen KB, von Meyenburg K (1980) Are growth rates of Escherichia coli in batch cultures limited by respiration? J Baceriol 144:114–123CrossRefGoogle Scholar
  98. 98.
    López JC, Quijano G, Pérez R, Muñoz R (2014) Assessing the influence of CH4 concentration during culture enrichment on the biodegradation kinetics and population structure. J Environ Manage 146:116–123PubMedCrossRefGoogle Scholar
  99. 99.
    Fennel DE, Underhill SE, Jewell WJ (1992) Methanotrophic attached-film reactor development and biofilm characteristics. Biotechnol Bioeng 40:1218–1232CrossRefGoogle Scholar
  100. 100.
    Hirayama H, Abe M, Miyazaki M, Nunoura T, Furushima Y, Yamamoto H, Takai K (2014) Methylomarinovum caldicuralii gen. nov., sp. nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family Methylothermaceae fam. nov. Int J Syst Evol Microbiol 64:989–999PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Hirayama H, Suzuki Y, Abe M, Miyazaki M, Makita H, Inagaki F, Uematsu K, Takai K (2011) Methylothermus subterraneus sp. nov., a moderately thermophilic methanotroph isolated from a terrestrial subsurface hot aquifer. Int J Syst Evol Microbiol 61:2646–2653PubMedCrossRefGoogle Scholar
  102. 102.
    Wise MG, McArthur JV, Shimkets LJ (2001) Methylosarcina fibrata gen. nov., sp. nov. and Methylosarcina quisquiliarum sp.nov., novel type I methanotrophs. Int J Syst Evol Microbiol 51:611–621PubMedCrossRefGoogle Scholar
  103. 103.
    Dedysh SN, Belova SE, Bodelier PLE, Smirnova KV, Khmelenina VN, Chidthaisong A, Trotsenko YA, Liesack W, Dunfield PF (2007) Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing “signature” fatty acids of type I methanotrophs. Int J Syst Evol Microbiol 57:472–479PubMedCrossRefGoogle Scholar
  104. 104.
    Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland NK, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306PubMedCrossRefGoogle Scholar
  105. 105.
    Helm J, Wendlandt KD, Jechorek M, Stottmeister U (2008) Potassium deficiency results in accumulation of ultra-high molecular weight poly-β-hydroxybutyrate in a methane-utilizing mixed culture. J Appl Microbiol 105:1054–1061PubMedCrossRefGoogle Scholar
  106. 106.
    Wendlandt KD, Geyer W, Mirschel G, Hemidi FAH (2005) Possibilities for controlling a PHB accumulation process using various analytical methods. J Biotechnol 117:119–129PubMedCrossRefGoogle Scholar
  107. 107.
    Wendlandt KD, Jechorek M, Helm J, Stottmeister U (2001) Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J Biotechnol Tailored Biopolymers 86:127–133Google Scholar
  108. 108.
    Ordaz A, López JC, Figueroa-González I, Muñoz R, Quijano G (2014) Assessment of methane biodegradation kinetics in two-phase partitioning bioreactors by pulse respirometry. Water Res 67:46–54PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Han B, Su T, Wu H, Gou Z, Xing XH, Jiang H, Chen Y, Li X, Murrell JC (2009) Paraffin oil as a “methane vector” for rapid and high cell density cultivation of Methylosinus trichosporium OB3b. Appl Microbiol Biotechnol 83:669–677PubMedCrossRefGoogle Scholar
  110. 110.
    Chang HN, Yoo IK, Kim BS (1994) High density cell culture by membrane-based cell recycle. Biotechnol Adv 12:467–487PubMedCrossRefGoogle Scholar
  111. 111.
    Shiloach J, Fass R (2005) Growing E. coli to high cell density—a historical perspective on method development. Biotechnol Adv 23:345–357PubMedCrossRefGoogle Scholar
  112. 112.
    Nguyen HHT, Shiemke AK, Jacobs SJ, Hales BJ, Lidstrom ME, Chan SI (1994) The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 269:14995–15005PubMedGoogle Scholar
  113. 113.
    Nguyen HHT, Elliott SJ, Yip JH, Chan SI (1998) The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme. Isolation and characterization. J Biol Chem 273:7957–7966PubMedCrossRefGoogle Scholar
  114. 114.
    Yu SS, Chen KH, Tseng MY, Wang YS, Tseng CF, Chen YJ, Huang DS, Chan SI (2003) Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J Bacteriol 185:5915–5924PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Ge X, Yang L, Sheets JP, Yu Z, Li Y (2014) Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol Adv 32:1460–1475PubMedCrossRefGoogle Scholar
  116. 116.
    Park D, Lee J (2013) Biological conversion of methane to methanol. Korean J Chem Eng 30:977–987CrossRefGoogle Scholar
  117. 117.
    Tabata K, Okura I (2008) Hydrogen and methanol formation utilizing bioproesses. J Jpn Petrol Inst 51:255–263CrossRefGoogle Scholar
  118. 118.
    Xin JY, Zhang YX, Zhang S, Li SB (2007) Methanol production from CO2 by resting cells of the methanotrophic bacterium Methylosinus trichosporium IMV 3011. J Basic Microbiol 47:426–435PubMedCrossRefGoogle Scholar
  119. 119.
    Xin JY, Cui JR, Niu JZ, Hua SF, Xia CG, Li SB, Zhu LM (2004) Production of methanol from methane by methanotrophic bacteria. Biocatal Biotransform 22:225–229CrossRefGoogle Scholar
  120. 120.
    Kondratenko EV, Peppel T, Seeburg D, Kondratenko VA, Kalevaru N, Martina A, Wohlrab S (2017) Methane conversion into different hydrocarbons or oxygenates: current status and future perspectives in catalyst development and reactor operation. Catal Sci Technol 7:366–381Google Scholar
  121. 121.
    Khokhar MD, Shukla RS, Jasra RV (2009) Selective oxidation of methane by molecular oxygen catalyzed by a bridged binuclear ruthenium complex at moderate pressures and ambient temperature. J Mol Catal A 299:108–116CrossRefGoogle Scholar
  122. 122.
    Ito H, Mori F, Tabata K, Okura I, Kamachi T (2014) Methane hydroxylation using light energy by the combination of thylakoid and methane monooxygenase. RSC Adv 4:8645–8648CrossRefGoogle Scholar
  123. 123.
    Ito H, Kondo R, Yoshimori K, Kamachi T (2018) Methane hydroxylation with water as an electron donor under light irradiation in the presence of reconstituted membranes containing both photosystem II and a methane monooxygenase. ChemBioChem 19:2152–2155PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Tokyo Institute of TechnologyYokohamaJapan

Personalised recommendations