Skip to main content

Heterogeneous and Homogeneous Catalytic Partial Oxidations of Methane to Methanol and Its Derivatives

  • Chapter
  • First Online:
Catalysis and the Mechanism of Methane Conversion to Chemicals

Abstract

As described in Chapter 2, biological systems can accomplish the conversion of methane to methanol via direct oxidation of methane with molecular oxygen at ambient temperature and pressure. Such systems have inspired scientists to attempt to establish artificial, energy-efficient, one-step processes for methanol production from methane using molecular oxygen as the oxidant. However, methanol production in such artificial systems remains highly challenging. In this chapter, the systems for the direct conversion of methane to methanol over homogeneous or heterogeneous catalysts developed so far are reviewed. Important examples of synthetic homogeneous and heterogeneous catalytic systems for the oxidation of methane to methanol are described. In heterogeneous catalysis, materials based on several metals have been found capable of catalytically producing methanol from methane. The methanol yields obtained in these reactions were low, mainly due to the high reactivity of methanol under the reaction conditions for the activation of methane. The highly selective synthesis of methanol via methane conversion by homogeneous metal catalysts remains difficult, with far fewer successful examples than heterogeneous catalysts. On the other hand, reactions in which methanol is obtained as its more stable ester derivatives have been devised. These reactions achieved very high product selectivity even at high methane conversion, and allow the production of methyl esters with higher concentrations than can be achieved in the production of methanol. However, approaches for methanol production from methane via methanol derivatives and those for direct conversion of methane to methanol should be considered separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spencer ND (1988) Partial oxidation of methane to formaldehyde by means of molecular oxygen. J Catal 109:187–197

    Article  CAS  Google Scholar 

  2. Spencer ND, Pereira CJ (1989) V2O5-SiO2-catalyzed methane partial oxidation with molecular oxygen. J Catal 116:399–406

    Article  CAS  Google Scholar 

  3. Liu HF, Li RS, Liew KY, Johnson RE, Lunsford JH (1984) Partial oxidation of methane by nitrous oxide over molybdenum on silica. J Am Chem Soc 106:4117–4121

    Article  CAS  Google Scholar 

  4. Caceres CV, Fierro JLG, Lopez Agudo A, Blanco MN, Thomas HJ (1985) Preparation and characterization of equilibrium adsorption-prepared molybdena-alumina catalysts. J Catal 95:501–511

    Article  CAS  Google Scholar 

  5. Kobayashi T, Guilhaume N, Miki J, Kitamura N, Haruta M (1996) Oxidation of methane to formaldehyde over FeSiO2 and Sn-W mixed oxides. Catal Today 32:171–175

    Article  CAS  Google Scholar 

  6. Michalkiewicz B (2004) Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5. Appl Catal A: Gen 277:147–153

    Article  CAS  Google Scholar 

  7. Zhang Q, Li Y, An D, Wang Y (2009) Catalytic behavior and kinetic features of FeOx/SBA-15 catalyst for selective oxidation of methane by oxygen. Appl Catal A: Gen 356:103–111

    Article  CAS  Google Scholar 

  8. Arena F, Gatti G, Martra G, Coluccia S, Stievano L, Spadaro L, Famulari P, Parmaliana A (2005) Structure and reactivity in the selective oxidation of methane to formaldehyde of low-loaded FeOx/SiO2 catalysts. J Catal 231:365–380

    Article  CAS  Google Scholar 

  9. He J, Li Y, An D, Zhang Q, Wang Y (2009) Selective oxidation of methane to formaldehyde by oxygen over silica-supported iron catalysts. J Nat Gas Chem 18:288–294

    Article  CAS  Google Scholar 

  10. Otsuka K, Wang Y (2001) Direct conversion of methane into oxygenates. Appl Catal A: Gen 222:145–161

    Article  CAS  Google Scholar 

  11. Wang Y (2006) Selective oxidation of hydrocarbons catalyzed by iron-containing heterogeneous catalysts. Res Chem Intermed 32:235–251

    Article  CAS  Google Scholar 

  12. McCormick RL, Alptekin GO (2000) Comparison of alumina-, silica-, titania-, and zirconia-supported FePO4 catalysts for selective methane oxidation. Catal Today 55:269–280

    Article  CAS  Google Scholar 

  13. Alptekin GO, Herring AM, Williamson DL, Ohno TR, McCormick RL (1999) Methane partial oxidation by unsupported and silica supported iron phosphate catalysts: influence of reaction conditions and co-feeding of water on activity and sectivity. J Catal 181:104–112

    Article  CAS  Google Scholar 

  14. Wang X, Wang Y, Tang Q, Guo Q, Zhang Q, Wan H (2003) MCM-41-supported iron phosphate catalyst for partial oxidation of methane to oxygenates with oxygen and nitrous oxide. J Catal 217:457–467

    Article  CAS  Google Scholar 

  15. Wang Y, Wang X, Su Z, Guo Q, Tang Q, Zhang Q, Wan H (2004) SBA-15-supported iron phosphate catalyst for partial oxidation of methane to formaldehyde. Catal Today 93–95:155–161

    Article  CAS  Google Scholar 

  16. Brown MJ, Parkyns ND (1991) Progress in the partial oxidation of methane to methanol and formaldehyde. Catal Today 8:305–335

    Article  CAS  Google Scholar 

  17. Fajardo CAG, Niznansky D, Guyen YN, Courson C, Roger A-C (2008) Methane selective oxidation to formaldehyde with Fe-catalysts supported on silica or incorporated into the support. Catal Commun 9:864–869

    Article  CAS  Google Scholar 

  18. Štolcová M, Litterscheid C, Hronec M, Glaum R (2007) Bimetallic orthophosphate and pyrophosphate catalysts for direct oxidation of methane to formaldehyde. Stud Surf Sci Catal 167:37–42

    Article  Google Scholar 

  19. Polnišer R, Štolcová M, Hronec M, Mikul M (2011) Structure and reactivity of copper iron pyrophosphate catalysts for selective oxidation of methane to formaldehyde and methanol. Appl Catal A Gen 400:122–130

    Article  CAS  Google Scholar 

  20. Sobolev VI, Dubkov KA, Panna OV, Panov GI (1995) Selective oxidation of methane to methanol on a FeZSM-5 surface. Catal Today 24:251–252

    Article  CAS  Google Scholar 

  21. Snyder BER, Vanelderen P, Bols ML, Hallaert SD, Böttger LH, Ungur L, Pierloot K, Schoonheydt RA, Sels BF, Solomon EI (2016) The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature 536:317–321

    Article  PubMed  CAS  Google Scholar 

  22. Starokon EV, Parfenov MV, Pirutko LV, Abornev SI, Panov GI (2011) Room-temperature oxidation of methane by α-oxygen and extraction of products from the FeZSM-5 surface. J Phys Chem C 115:2155–2161

    Article  CAS  Google Scholar 

  23. Göltl F, Michel C, Andrikopoulos PC, Love AM, Hafner J, Hermans I, Sautet P (2016) Computationally exploring confinement effects in the methane-to-methanol conversion over iron-oxo centers in zeolites. ACS Catal 6:8404–8409

    Article  CAS  Google Scholar 

  24. Zhen KJ, Khan MM, Mak CH, Lewis KB, Somorjai GA (1985) Partial oxidation of methane with nitrous oxide over V2O5-SiO2 catalyst. J Catal 94:501–507

    Article  CAS  Google Scholar 

  25. Chen SY, Willcox D (1993) Effect of vanadium oxide loading on the selective oxidation of methane over vanadium oxide (V2O5)/silica. Ind Eng Chem Res 32:584–587

    Article  CAS  Google Scholar 

  26. Otsuka K, Hatano M (1992) Boron, phosphorus, and alkaline earth-metal mixed oxides as active catalysts in partial oxidation of methane into formaldehyde. Chem Lett 21:2397–2400

    Article  Google Scholar 

  27. Weng T, Wolf EE (1993) Partial oxidation of methane on Mo/Sn/P silica supported catalysts. Appl Catal A 96:383–396

    Article  CAS  Google Scholar 

  28. Tabata K, Teng Y, Takemoto T, Suzuki E, Banares MA, Pena MA, Fierro JL (2002) Activation of methane by oxygen and nitrogen oxide. Catal Rev 44:1–58

    Article  CAS  Google Scholar 

  29. Aoki K, Ohmae M, Nanba T, Takeishi K, Azuma N, Ueno A, Ohfune H, Hayashi H, Udagawa Y (1998) Direct conversion of methane into methanol over MoO3/SiO2 catalyst in anexcess amount of water vapor. Catal Today 45:29–33

    Article  CAS  Google Scholar 

  30. Kasztelan S, Payen E, Moffat JB (1988) The formation of molybdosilicic acid on Mo/SiO2 catalysts and its relevance to methane oxidation. J Catal 112:320–324

    Article  CAS  Google Scholar 

  31. Barbaux Y, Elamrani A, Bonnelle JP (1987) Catalytic oxidation of methane on MoO3-SiO2: mechanism of oxidation with O2 and N2O studied by surface potential measurements. Catal Today 1:147–156

    Article  CAS  Google Scholar 

  32. Smith MR, Ozkan US (1993) The partial oxidation of methane to formaldehyde: role of different crystal planes of MoO3. J Catal 141:124–139

    Article  CAS  Google Scholar 

  33. Grzybowska-Swierkosz B (2000) Thirty years in selective oxidation on oxides: what have we learned? Top Catal 11:23–42

    Article  Google Scholar 

  34. Fu G, Xu X, Lu X, Wan H (2005) Mechanisms of methane activation and transformation on molybdenum oxide based catalysts. J Am Chem Soc 127:3989–3996

    Article  PubMed  CAS  Google Scholar 

  35. Kihlborg L (1963) Least squares refinement of the crystal structure of molybdenum trioxide. Ark Kemi 21:357–364

    CAS  Google Scholar 

  36. Spencer ND, Pereira CJ (1987) Partial oxidation of CH4 to HCHO over a MoO3-SiO2 catalyst: a kinetic study. AIChE J 33:1808–1812

    Article  CAS  Google Scholar 

  37. Kuba S, Heydorn PC, Grasselli RK, Gates BC, Che M, Kno¨zinger H (2001) Redox properties of tungstated zirconia catalysts: relevance to the activation of n-alkanes. Phys Chem Chem Phys 3:146–154

    Article  CAS  Google Scholar 

  38. Busca G, Finocchio E, Lorenzelli V, Ramis G, Baldi M (1999) IR studies on the activation of C-H hydrocarbon bonds on oxidation catalysts. Catal Today 49:453–465

    Article  CAS  Google Scholar 

  39. Limberg C (2003) The role of radicals in metal-assisted oxygenation reactions. Angew Chem Int Ed 42:5932–5954

    Article  CAS  Google Scholar 

  40. Mayer JM (1998) Hydrogen atom abstraction by metal−oxo complexes: understanding the analogy with organic radical reactions. Acc Chem Res 31:441–450

    Article  CAS  Google Scholar 

  41. Soper JD, Mayer JMJ (2003) Slow hydrogen atom self-exchange between Os(IV) anilide and Os(III) aniline complexes: relationships with electron and proton transfer self-exchange. J Am Chem Soc 125:12217–12229

    Article  PubMed  CAS  Google Scholar 

  42. Roberts BP (1999) Polarity-reversal catalysis of hydrogen-atom abstraction reactions: concepts and applications in organic chemistry. Chem Soc Rev 28:25–35

    Article  CAS  Google Scholar 

  43. Fornés V, López C, López HH, Mart´ınez A (2003) Catalytic performance of mesoporous VOx/SBA-15 catalysts for the partial oxidation of methane to formaldehyde. Appl Catal A: Gen 249:345–354

    Article  CAS  Google Scholar 

  44. Kartheuser B, Hodnett BK (1993) Relationship between dispersion of vanadia on silica catalysts and selectivity in the conversion of methane into formaldehyde. J Chem Soc Chem Commun 1093–1094

    Google Scholar 

  45. Koranne MM, Goodwin JG Jr, Marcelin G (1994) Partial oxidation of methane over silica- and alumina-supported vanadia catalysts. J Catal 148:388–391

    Article  CAS  Google Scholar 

  46. Irusta S, Cornaglia LM, Miró EE, Lombardo EA (1995) The role of V=O sites on the oxidation of methane to formaldehyde over V/SiO2. J Catal 156:167–170

    Article  Google Scholar 

  47. Irusta S, Marchi AJ, Lombardo EA, Miró EE (1996) Characterization of surface species on V/SiO2 and V, Na/SiO2 and their role in the partial oxidation of methane to formaldehyde. Catal Lett 40:9–16

    Article  CAS  Google Scholar 

  48. Das N, Eckert H, Hu H, Wachs IE, Walzer JF, Feher FJ (1993) Bonding states of surface vanadium(V) oxide phases on silica: structural characterization by 51V NMR and Raman spectroscopy. J Phys Chem 97:8240–8243

    Article  CAS  Google Scholar 

  49. Wang CB, Herman RG, Shi C, Sun Q, Roberts JE (2003) V2O5-SiO2 xerogels for methane oxidation to oxygenates: preparation, characterization, and catalytic properties. Appl Catal A 247:321–333

    Article  CAS  Google Scholar 

  50. Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA (2005) Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J Am Chem Soc 127:1394–1395

    Article  PubMed  CAS  Google Scholar 

  51. Li Y, An D, Zhang Q, Wang Y (2008) Copper-catalyzed selective oxidation of methane by oxygen: studies on catalytic behavior and functioning mechanism of CuOx/SBA-15. J Phys Chem C 112:13700–13708

    Article  CAS  Google Scholar 

  52. Panov GI, Sobolev VI, Dubkov KA, Parmon VN, Ovanesyan NS, Shilov AE, Shteinman AA (1997) Iron complexes in zeolites as a new model of methane monooxygenase. React Kinet Catal Lett 61:251–258

    Article  CAS  Google Scholar 

  53. Smeets PJ, Groothaert MH, Schoonheydt RA (2005) Cu based zeolites: a UV-vis study of the active site in the selective methane oxidation at low temperatures. Catal Today 110:303–309

    Article  CAS  Google Scholar 

  54. Woertink JS, Smeets PJ, Groothaert MH, Vance MA, Sels BF, Schoonheydt RA, Solomon EIA (2009) [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc Natl Acad Sci USA 106:18908–18913

    Article  PubMed  Google Scholar 

  55. Grundner S, Markovits MAC, Li G, Tromp M, Pidko EA, Hensen EJM, Jentys A, Sanchez-Sanchez M, Lercher JA (2015) Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat Commun 6:1–8

    Article  CAS  Google Scholar 

  56. Markovits MAC, Jentys A, Tromp M, Sanchez-Sanchez M, Lercher JA (2016) Effect of location and distribution of Al sites in ZSM-5 on the formation of Cu-oxo clusters active for direct conversion of methane to methanol. Top Catal 59:1554–1563

    Article  CAS  Google Scholar 

  57. Raja R, Ratnasamy P (1997) Direct conversion of methane to methanol. Appl Catal A Gen 158:L7–L15

    Article  CAS  Google Scholar 

  58. Hammond C, Forde MM, Ab Rahim MH, Thetford A, He Q, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Dummer NF, Murphy DM, Carley AF, Taylor SH, Willock DJ, Stangland EE, Kang J, Hagen H, Kiely CJ, Hutchings GJ (2012) Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew Chem Int Ed 51:5129–5133

    Article  CAS  Google Scholar 

  59. Panov GI, Uriarte AK, Rodkin MA, Sobolev VI (1998) Generation of active oxygen species on solid surfaces. Opportunity for novel oxidation technologies over zeolites. Catal Today 41:365–385

    Article  CAS  Google Scholar 

  60. Sushkevich VL, Palagin D, Ranocchiari M, van Bokhoven JA (2017) Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356:523–527

    Article  PubMed  CAS  Google Scholar 

  61. Wang W, Hunger M (2008) Reactivity of surface alkoxy species on acidic zeolite catalysts. Acc Chem Res 41:895–904

    Article  PubMed  CAS  Google Scholar 

  62. Benlounes O, Mansouri S, Rabia C, Hocine S (2008) Direct oxidation of methane to oxygenates over heteropolyanions. J Nat Gas Chem 17:309–312

    Article  CAS  Google Scholar 

  63. Mansouri S, Benlounes Q, Rabia C, Thouvenot R, Bettahar MM, Hocine S (2013) Partial oxidation of methane over modified Keggin-type polyoxotungstates. J Mol Catal A: Chem 379:255–262

    Article  CAS  Google Scholar 

  64. Khokhar MD, Shukla RS, Jasra RV (2009) Selective oxidation of methane by molecular oxygen catalyzed by a bridged binuclear ruthenium complex at moderate pressures and ambient temperature. J Mol Catal A: Chem 299:108–116

    Article  CAS  Google Scholar 

  65. Shilov AE, Shul’pin GB (1997) Activation of C–H bonds by metal complexes. Chem Rev 3:2879–2932

    Article  Google Scholar 

  66. Yamanaka I, Soma M, Otsuka K (1995) Oxidation of methane to methanol with oxygen catalysed by europium trichloride at room temperature. J Chem Soc Chem Commun 2235–2236

    Google Scholar 

  67. Yamanaka I (2002) Reductive activation of O2 and monooxygenation of hydrocarbons by Eu catalyst. Catal Surv Asia 6:63–72

    Article  CAS  Google Scholar 

  68. Yamanaka I, Soma M, Otsuka K (1996) Enhancing effect of titanium(II) for the oxidation of methane with O2 by an EuCl3-Zn-CF3CO2H-catalytic system at 40 °C. Chem Lett 25:565–566

    Article  Google Scholar 

  69. Piao D, Inoue K, Shibasaki H, Taniguchi Y, Kitamura T, Fujiwara Y (1999) An efficient partial oxidation of methane in trifluoroacetic acid using vanadium-containing heteropolyacid catalysts. J Organomet Chem 574:116–120

    Article  CAS  Google Scholar 

  70. Periana RA, Taube DJ, Evitt ER, Lӧffler DG, Wentrcek PR, Voss G, Masuda T (1993) A mercury-catalyzed, high-yield system for the oxidation of methane to methanol. Science 259:340–343

    Article  PubMed  CAS  Google Scholar 

  71. Sen A, Benvenuto MA, Lin M, Hutson AC, Basickes N (1994) Activation of methane and ethane and their selective oxidation to the alcohols in protic media. J Am Chem Soc 116:998–1003

    Article  CAS  Google Scholar 

  72. Jones CJ, Taube D, Ziatdinov VR, Periana RA, Nielsen RJ, Oxgaard J, Goddard WA (2004) Selective oxidation of methane to methanol catalyzed, with C-H activation, by homogeneous, cationic gold. Angew Chem Int Ed 43:4626–4629

    Article  CAS  Google Scholar 

  73. Periana RA, Taube DJ, Gamble S, Taube H, Satoh T, Fujii H (1998) Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280:560–564

    Article  PubMed  CAS  Google Scholar 

  74. Zimmermann T, Soorholtz M, Bilke M, Schueth F (2016) Selective methane oxidation catalyzed by platinum salts in oleum at turnover frequencies of large-scale industrial processes. J Am Chem Soc 138:12395–12400

    Article  PubMed  CAS  Google Scholar 

  75. Hashiguchi BG, Konnick MM, Bischof SM, Gustafson SJ, Devarajan D, Gunsalus N, Ess DH, Periana RA (2014) Main-group compounds selectively oxidize mixtures of methane, ethane, and propane to alcohol esters. Science 343:1232–1237

    Article  PubMed  CAS  Google Scholar 

  76. Gretz E, Oliver TF, Sen A (1987) Carbon-hydrogen bond activation by electrophilic transition-metal compounds. Palladium(II)-mediated oxidation of arenes and alkanes including methane. J Am Chem Soc 109:8109–8111

    Article  CAS  Google Scholar 

  77. Sen A (1991) Homogeneous palladium(II) mediated oxidation of methane. Plat Metal Rev 35:126–132

    CAS  Google Scholar 

  78. Muehlhofer M, Strassner T, Herrmann WA (2000) New catalyst systems for the catalytic conversion of methane into methanol. Angew Chem Int Ed 41:1745–1747

    Article  Google Scholar 

  79. Munz D, Myyer D, Strassner T (2013) Methane CH activation by palladium complexes with chelating bis(NHC) ligands: a DFT study. Organometal 32:3469–3480

    Article  CAS  Google Scholar 

  80. Vargaftik MN, Stolarov IP, Moiseev II (1990) Highly selective partial oxidation of methane to methyl trifluoroacetate. J Chem Soc Chem Commun 1049–1050

    Google Scholar 

  81. Strassner T, Ahrens S, Muehlhofer M, Munz D, Zeller A (2013) Cobalt-catalyzed oxidation of methane to methyl trifluoroacetate by dioxygen. Eur J Inorg Chem 21:3659–3663

    Article  CAS  Google Scholar 

  82. An Z, Pan X, Liu X, Han X, Bao X (2006) Combined redox couples for catalytic oxidation of methane by dioxygen at low temperatures. J Am Chem Soc 128:16028–16029

    Article  PubMed  CAS  Google Scholar 

  83. Yuan J, Wang L, Wang Y (2011) Direct oxidation of methane to a methanol derivative using molecular oxygen. Ind Eng Chem Res 50:6513–6516

    Article  CAS  Google Scholar 

  84. Riess JG (2001) Oxygen carriers (“Blood substitutes”)-raison d’etre, chemistry and some physiology. Chem Rev 101:2797–2920

    Article  PubMed  CAS  Google Scholar 

  85. Riess JG (2002) Fluorous micro- and nanophases with a biomedical perspective. Tetrahedron 58:4113–4131

    Article  CAS  Google Scholar 

  86. Elibol M, Mavituna F (1999) A remedy to oxygen limitation problem in antibiotic production addition of perfluorocarbon. Biochem Eng J 3:1–7

    Article  CAS  Google Scholar 

  87. Kozhevnikov IV (1997) PMo12-nVnO(3+n)- 40 heteropolyanions as catalysts for aerobic oxidation. J Mol Catal A: Chem 117:151–158

    Article  CAS  Google Scholar 

  88. Palkovits R, von Malotki C, Baumgarten M, Müllen K, Baltes C, Antonietti M, Kuhn P, Weber J, Thomas A, Schüth F (2010) Development of molecular and solid catalysts for the direct low-temperature oxidation of methane to methanol. Chemsuschem 22:277–282

    Article  CAS  Google Scholar 

  89. Palkovits R, Antonietti M, Kuhn P, Thomas A, Schüth F (2009) Solid catalysts for the selective low-temperature oxidation of methane to methanol. Angew Chem Int Ed 48:6909–6912

    Article  CAS  Google Scholar 

  90. Ravi M, Ranocchiari M, van Bokhoven JA (2017) The direct catalytic oxidation of methane to methanol—a critical assessment. Angew Chem Int Ed 22:16464–16483

    Article  CAS  Google Scholar 

  91. Conley BL, Tenn WJ, Young KJH, Ganesh SK, Meier SK, Ziatdinov VR, Mironov O, Oxgaard J, Gonzales J (2006) Goddard III WA, Periana RA. J Mol Catal A 251:8–23

    Article  CAS  Google Scholar 

  92. Periana RA, Bhalla G, Tenn WJ, Young KJH, Liu XY, Mironov O, Jones CJ, Ziatdinov VR (2004) J Mol Catal A 220:7–25

    Article  CAS  Google Scholar 

  93. Furuto T, Takeguchi M, Okura I (1999) Semicontinuous methanol biosynthesis by Methylosinus trichosporium OB3b. J Mol Catal A: Chem 144:257–261

    Article  CAS  Google Scholar 

  94. Lee SG, Goo JH, Kim HG, Oh JI, Kim YM, Kim SW (2004) Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol Lett 26:947–950

    Article  PubMed  CAS  Google Scholar 

  95. Duan C, Luo M, Xing X (2011) High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour Technol 102:7349–7353

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihide Baba .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baba, T., Miyaji, A. (2020). Heterogeneous and Homogeneous Catalytic Partial Oxidations of Methane to Methanol and Its Derivatives. In: Catalysis and the Mechanism of Methane Conversion to Chemicals. Springer, Singapore. https://doi.org/10.1007/978-981-15-4132-2_3

Download citation

Publish with us

Policies and ethics