Advertisement

Overview of Direct Methane Conversion to Chemicals with C–O and C–C Bonds

Chapter
  • 352 Downloads

Abstract

An overview of the conversion of methane to various chemicals, i.e., methanol, aromatic hydrocarbons, and olefins, via heterogeneous, homogeneous, and biological catalysts is provided, along with the social considerations and global circumstances surrounding methane conversion. The scope is mainly restricted to the “direct conversion of methane” to produce chemicals with C–O and C–C bonds, meaning that processes involving synthesis gas as an intermediate are not considered. To provide an understanding of the way in which the heterogeneous, homogeneous, and biological catalysts and their reaction environments control the formation of reaction intermediates from methane and contribute to the formation of C–O or C–C bonds to produce methanol, methanol derivatives, or hydrocarbons via the direct conversion of methane; various examples of direct methane conversion are discussed in terms of their mechanistic and functional aspects. Although no industrial processes for the direct conversion of methane to chemicals have been implemented, the development of such processes is essential from both economic development and energy security points of view. For scientists and engineers, the development of a next-generation process for direct methane conversion represents a “grand challenge” in chemistry, independent of trends in the larger world, such as the discovery of shale gas and the drive to reduce carbon dioxide emissions.

Keywords

Methane conversion to chemicals Methane activation Key reaction intermediate Natural gas Grand challenge 

References

  1. 1.
    BP Energy Economics (2018) BP Energy Outlook, 2018 edition. https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html
  2. 2.
    British Petroleum, BP (2018) Statistical review of world energy, June 2018, 67th edition. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
  3. 3.
    IEA (2018) World energy balance 2018Google Scholar
  4. 4.
    Bullin KA, Kroskop PE (2009) Compositional variety complicates processing plant for US shale gas. Oil Gas J 107:50–55Google Scholar
  5. 5.
    Schüeth F (2011) Chemical compounds for energy storage. Chemical Ingenieur Technik 83:1984–1993CrossRefGoogle Scholar
  6. 6.
    Huang K, Miller JB, Huber GW, Dumescic JA, Maravelias CT (2018) A general framework for the evaluation of direct nonoxidative methane conversion strategies. Joule 2:349–365CrossRefGoogle Scholar
  7. 7.
    Rostrup-Nielsen JR (2008) Organic reactions. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 6. Wiley-VCH, Mannheim, p 2882Google Scholar
  8. 8.
    Li J, He Y, Tan L, Zhang P, Peng X, Oruganti A, Yang G, Abe H, Wang Y, Tsubaki N (2018) Integrated tunable synthesis of liquid fuels via Fischer-Tropsch technology. Nature Catal 1:787–793CrossRefGoogle Scholar
  9. 9.
    Schwach P, Pan X, Bao X (2017) Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem Rev 117:8497–8520PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Gunsalus NJ, Koppaka A, Park SH, Bischot SM, Hashiguchi BG, Perianna RA (2017) Homogeneous functionalization of methane. Chem Rev 117:8521–8573PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Wang B, Albarracín-Suazo S, Pagán-Torres Y, Nikolla E (2017) Advances in methane conversion processes. Catal Today 285:147–158CrossRefGoogle Scholar
  12. 12.
    Ravi M, Ranocchiari M, von Bokhoven JA (2017) The direct catalytic oxidation of methane—a critical assessment. Angew Chem Int Ed 56:16464–16483CrossRefGoogle Scholar
  13. 13.
    Olivos-Suarez AI, Szécsényi Á, Hensen EJM, Ruiz-Maritinez J, Pidko EA, Gascon J (2016) Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: challenges and opportunities. ACS Catal 6:2965–2981CrossRefGoogle Scholar
  14. 14.
    Karakaya C, Kee RJ (2016) Progress in the direct catalytic conversion of methane to fuels and chemicals. Prog Energy Combust Sci 55:60–97CrossRefGoogle Scholar
  15. 15.
    Horn R, Schlögl R (2015) Methane activation by heterogeneous catalysis. Catal Lett 145:23–39CrossRefGoogle Scholar
  16. 16.
    Vollmer I, Yarulina I, Kapateijn F, Gascon J (2019) Progress in developing a structure-activity relationship for the direct aromatization of methane. ChemCatChem 11:39–52CrossRefGoogle Scholar
  17. 17.
    Gabrienko AA, Arzumanov SS, Tokarev AV, Danilova IG, Prosvirin IP, Kriventov VV, Zaikovski VI, Freude D, Stepanov AG (2017) Different efficiency on Zn2+ and ZnO species for methane activation on Zn-modified zeolites. ACS Catal 7:1818–1830CrossRefGoogle Scholar
  18. 18.
    Abate S, Barbera K, Centi G, Lazafame P, Perathoner S (2016) Disruptive catalysis by zeolites. Catal Sci Technol 6:2485–2501CrossRefGoogle Scholar
  19. 19.
    Ma S, Guo X, Zhao L, Scott S, Bao X (2013) Recent progress in methane dehydroaromatization: from laboratory curiosities to promising technology. J Energy Chem 22:10–20CrossRefGoogle Scholar
  20. 20.
    Tang P, Zlau Q, Wu Z, Ma D (2014) Methane activation: the past and future. Energy Environ Sci 7:2580–2591CrossRefGoogle Scholar
  21. 21.
    Shtenman AA (2016) Coordinational activation of methane and other alkanes by metal complexes. Russ Chem Bull Int Ed 65:1930–1944CrossRefGoogle Scholar
  22. 22.
    Lotz MD, Remy MS, Lao DB, Ariafard A, Yates BF, Canty AJ, Mayer JM, Sanford MS (2014) Formation of ethane from mono-methyl palladium (II) complexes. J Am Chem Soc 136:8237–8242PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Citek C, Herres-Pawlis S, Daniel T, Stack P (2015) Low temperature synthesis and reactivity of Cu2O2 models. Acc Chem Res 48:2424–2433PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Perianna RA, Bhalla G, Tenn WT III, Yong KJH, Kiu XY, Mironov O, Jones CJ, Ziatdinov VR (2004) Perspective on some challenges and approaches for developing the next generation of selective low temperature, oxidation catalysts for alkane hydroxylation based on the C-H activation reaction. J Mol Catal A: Chem 220:7–25CrossRefGoogle Scholar
  25. 25.
    Cavaliere VN, Mindiola DJ (2012) Methane: a new frontier in organometallic chemistry. Chem Sci 3:3356–3365CrossRefGoogle Scholar
  26. 26.
    Schwarz H (2014) How and why do cluster size, charge state and ligands affect the course of metal mediated gas-phase activation of methane. Isr J Chem 54:1413–1431CrossRefGoogle Scholar
  27. 27.
    Golisz SR, Gunnoe TB, Goddard WA III, Groves JT, Perianna RA (2011) Chemistry in the center for catalytic hydrocarbon functionalization: an energy frontier research center. Catal Lett 141:213–221CrossRefGoogle Scholar
  28. 28.
    Olah GA, Surya Prakash GK, Sommer J (1985) Superacids. Wiley, Wiley Interscience PublicationGoogle Scholar
  29. 29.
    Olah GA, Surya Prakash GK, Sommer J (1979) Superacids. Science 206:13–20PubMedCrossRefGoogle Scholar
  30. 30.
    Olah GA (1973) Carbocations and electrophilic reactions. Angew Chem Inter Ed 12:173–254CrossRefGoogle Scholar
  31. 31.
    Jansiewski AJ, Que L (2018) Dioxygen activation by nonheme diiron enzymes: diverse dioxygen adducts, high-valent intermediate, and related model complexes. Chem Rev 118:2554–2592CrossRefGoogle Scholar
  32. 32.
    Zhang S, Karthikeyan R, Fernando SD (2017) Low-temperature biological activation of methane: structure, function and molecular interactions of soluble and particulate methane monooxygenases. Rev Environ Sci Biotechnol 16:611–623CrossRefGoogle Scholar
  33. 33.
    Wang VCC, Maji S, Chen PPY, Lee HK, Yu SSF, Chan SI (2017) Alkane oxidation: methane monooxygenases, related enzymes, and their biomimetics. Chem Rev 117:8574–8621PubMedCrossRefGoogle Scholar
  34. 34.
    Wang W, Liang AD, Lippard SJ (2015) Coupling oxygen consumption with hydrocarbon oxidation in bacterial multicomponent monooxygenases. Acc Chem Res 48:2632–2639PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Haynes CA, Gonzalez R (2014) Rethinking biological activation of methane and conversion to liquid fuels. Nat Chem Biol 10:331–339PubMedCrossRefGoogle Scholar
  36. 36.
    Sirajuddin S, Rosenzweig AC (2015) Enzymatic oxidation of methane. Biochemistry 54:2283–2294PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Bjorck CE, Dobson PD, Pandhal J (2018) Biotechnological conversion of methane to methanol: evaluation of progress and potential. AIMS Bioeng 5:1–38CrossRefGoogle Scholar
  38. 38.
    Xu J, Zheng A, Wang X, Qi G, Su J, Du J, Gan Z, Wu J, Wang W, Deng F (2012) Room temperature activation of methane over Zn modified H-ZSM-5 zeolites: insight from solid-state NMR and theoretical calculations. Chem Soc 3:2932–2940Google Scholar
  39. 39.
    Bango A, Saielli G (2011) Relative DFT calculations of the NMR properties and reactivity of transition metal σ-complexes insight on C-H bond activation. Phys Chem Chem Phys 13:4285–4291CrossRefGoogle Scholar
  40. 40.
    Gabrienko AA, Arzumanov SS, Morzo IB, Toktarev AV, Wang W, Stepanov AG (2013) Methane activation and transformation on Ag/H-ZSM-5zeolite studied with solid-state NMR. J Phys Chem C 117:7690–7702CrossRefGoogle Scholar
  41. 41.
    Yoshizawa K (2013) Quantum chemical studies on dioxygen activation and methane hydroxylation by diiron and dicopper species as well as related metal-oxo species. Bull Chem Soc Jpn 86:1083–1116CrossRefGoogle Scholar
  42. 42.
    Latimer AA, Kulkarini AR, Aljama H, Montoya JH, Yoo JS, Tsai C, Abild-Pedersen F, Studt F, Norskov JK (2017) Understanding trends in C-H bond activation in heterogeneous catalysis. Nat Mater 16:225–229PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Armentrout PB (2017) Methane activation by 5d transition metals: energetics mechanism and periodic trends. Chem Eur J 23:10–18PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Ess DH, Goddard WA III, Perianna RA (2010) Electric, ambiphilic and nucleophilic C-H activation through transition-state and reaction pathway interaction energy decompositions. Organometallics 29:6459–6472CrossRefGoogle Scholar
  45. 45.
    Cruellas A, Melchiori T, Gallucci F, van Sint Annaland M (2017) Advanced reactor concept for oxidative coupling of methane. Catal Rev Sci Technol 59:234–294CrossRefGoogle Scholar
  46. 46.
    Mohammad Y, Penlidis A (2018) Optimization in chemical reaction engineering: oxidative coupling of methane as a case study. Ind Eng Chem Res 57:8664–8678CrossRefGoogle Scholar
  47. 47.
    Kondratenko EV, Peppel T, Seeburg D, Kobndratenko VA, Kalevaru N, Martin A, Wohlrab S (2017) Catal Sci Technol 7:366–381CrossRefGoogle Scholar
  48. 48.
    Fajardo CAG, Niznansky D, N’Guyen Y, Courson C, Roger AC (2008) Methane selective oxidation to formaldehyde with Fe-catalysts supported on silica or incorporated into the support. Catal Commun 9:864–869CrossRefGoogle Scholar
  49. 49.
    Zuo Z, Ramírez PJ, Senanayake SD, Liu P, Rodriguez JA (2016) Low-temperature conversion of methane to methanol on CeOx/Cu2O catalysts: water controlled activation of the C-H Bond. J Am Chem Soc 138:13810–13813PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Lustemberg PG, Palomino RM, Gutiérrez RA, Grinter DC, Vorokhta M, Liu Z, Ramírez PJ, Matolín V, Ganduglia-Pirovano MV, Senanayake SD, Rodriguez JA (2018) Direct conversion of methane to methanol on Ni-Ceria surfaces: metal–support interactions and water-enabled catalytic conversion by site blocking. J Am Chem Soc 140:7681–7687PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Narsimhan K, Iyoki K, Dinh K, Román-Leshkov Y (2016) Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Cent Sci 2:424–429PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Liu HF, Liu RS, Liew KY, Jonson RE, Lusnford JH (1984) Partial oxidation of methane by nitrous oxide over molybdenum on silica. J Am Chem Soc 106:4117–4121CrossRefGoogle Scholar
  53. 53.
    Najafian A, Cundari TR (2017) Methane C-H activation via 3d metal oxide complexes with potentially redox-noninnocent pincer ligands: density functional theory study. Inorg Chem 56:12282–12290PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Najafian A, Cundari TR (2018) C-H activation methane by nickel methoxide complexes: A density functional theory study. Organometallics 37:3111–3121CrossRefGoogle Scholar
  55. 55.
    Driscoll DJ, Martir W, Wang JW, Lusnford JH (1985) Formation of gas-phase methyl radicals over MgO. J Am Chem Soc 107:58–63CrossRefGoogle Scholar
  56. 56.
    Grecker D, Motagamwala AH, Rivera-Dones KR, Miller JB, Hiuber GW, Mavrikakis M, Dumesic JA (2017) Methane conversion to ethylene and aromatics on PtSn catalysts. ACS Catal 7:2088–2100CrossRefGoogle Scholar
  57. 57.
    Olah GA, Sclosberg RH (1968) Chemistry in super acids. I. Hydrogen exchange and polycondensation of methane and alkane in FSO3H-SbF5 (“magic acid”) solution. Protonation of alkanes and the intermediacy of CH5+ and related hydrocarbon ions. The high chemical reactivity of “paraffins” in ionic solution reaction. J Am Chem Soc 90:2726–2727CrossRefGoogle Scholar
  58. 58.
    Baba T, Inazu K (2006) Heterolytic dissociation of C-H bond of methane over Ag+-exchanged zeolites and conversion of methane into higher hydrocarbons in the presence of ethylene or benzene. Chem Lett 35:142–147CrossRefGoogle Scholar
  59. 59.
    Baba T, Komatsu N, Sawada H, Yamaguchi Y, Takahashi T, Sugisawa H, Ono Y (1999) 1H magic angle spinning NMR evidence for dissociate adsorption of hydrogen on Ag+-exchanged A- and Y-zeolites. Langmuir 15:7894–7896CrossRefGoogle Scholar
  60. 60.
    Guo J, Lou H, Zheng X (2009) Energy-efficient coaromatization of methane and propane. J Natural Gas Chem 18:260–272CrossRefGoogle Scholar
  61. 61.
    Soulivong D, Copéret C, Thivolle-Cazat J, Basset JM (2004) Cross-metathesis of propane and methane: a catalytic reaction of C-C bond cleavage of a higher alkane by methane. Angew Chem Int Ed 43:5366–5369CrossRefGoogle Scholar
  62. 62.
    Lunsford JH, Qiu P, Rosynek MP, Yu Z (1998) Catalytic conversion methane and ethylene to propylene. J Phys Chem B 102:167–173CrossRefGoogle Scholar
  63. 63.
    Adebajo MO (2007) Green chemistry perspectives of methane conversion via oxidative methylation of aromatics. Green Chem 9:526–539CrossRefGoogle Scholar
  64. 64.
    Kim H, Suh HM, Paik H (1992) Oxidative methylation of toluene with methane over lead-lithum-magnesium oxide catalysts. Appl Catal A General 87:115–127CrossRefGoogle Scholar
  65. 65.
    Stoukides M (1995) Electrochemical studies of methane activation. J Appl Electrochem 25:899–912CrossRefGoogle Scholar
  66. 66.
    Spinner N, Mustain WE (2013) Electrochemical methane activation and conversion to oxygenates at room temperature. ECS Trans 53:1–20CrossRefGoogle Scholar
  67. 67.
    Arnason L, Schmidt PS, Pandey M, Bagger A, Thygesen KS, Steprens IEL, Rossmeisl J (2018) Fundamental limitation of electrocatalytic methane conversion to methanol. Phys Chem Chem Phys 20:11152–11159CrossRefGoogle Scholar
  68. 68.
    Minea T, vanden Bekerom DCM, Peeters FJJ, Zoethout E, Graswinckel MF, van de Sanden MCM, Cents T, Lefferts, van Rooij LGJ (2018) Non-oxidative methane coupling to C2 hydrocarbons in a microwave plasma reactor. Plasma Process Polym 15:e1800087 (1–16)Google Scholar
  69. 69.
    Yang Y (2002) Methane conversion and reforming by nonthermal plasma on pins. Ind Eng Chem Res 41:5198–5926Google Scholar
  70. 70.
    Ogo S, Sekine Y (2017) Catalytic reaction assisted by plasma or electronic field. Chem Rec 17:726–738PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Ogo S, Nakatsubo H, Iwasaki K, Sato A, Murakami K, Yabe T, Ishikawa A, Nakai H, Seine Y (2018) Electron-hopping brings lattice strain and high catalytic activity in the low-temperature oxidative coupling of methane in an electric filed. J Phys Chem C 122:2089–2096CrossRefGoogle Scholar
  72. 72.
    Delikonsntis E, Scapinello M, Stefanidis GD (2018) Low energy cost conversion of methane to ethylene in a hybrid plasma-catalytic reactor system. Fuel Process Technol 176:33–42CrossRefGoogle Scholar
  73. 73.
    Park S, Lee M, Bae J, Hong DY, Park YH, Hwang YK, Jeong MG, Kim YD (2017) Plasma-assisted no-oxidative conversion of methane over Mo/H-ZSM-5 catalyst in DBP reactor. Top Catal 60:735–742CrossRefGoogle Scholar
  74. 74.
    Baltrusaitis J, Jansen I, Christus JDS (2014) Renewable energy based catalytic CH4 conversion to fuels. Catal Sci Technol 4:2397–2411CrossRefGoogle Scholar
  75. 75.
    Shimura S, Yoshida H (2014) Semiconductor photocatalysts for non-oxidative coupling, dry reforming, and steam reforming of methane. Catal Surv Asia 18:24–33CrossRefGoogle Scholar
  76. 76.
    Handa H, Baba T, Ono Y (1998) H-D exchange between methane and deuteriated potassium amide supported on alumina. J Chem Soc, Faraday Trans 94:451–454CrossRefGoogle Scholar
  77. 77.
    Eller K, Schwarz H (1991) Organometallic chemistry in the gas phase. Chem Rev 91:1121–1177CrossRefGoogle Scholar
  78. 78.
    Schwarz H, Shaik S, Li J (2017) Electronic effect on room-temperatures, Gas-phase C-H bond activation by cluster oxides and metal carbide: the methane challenges. J Am Chem Soc 139:17201–17212PubMedCrossRefGoogle Scholar
  79. 79.
    Labinger JA, Bercaw JE (2002) Understanding and exploiting C-H bond activation. Nature 417:507–514PubMedCrossRefGoogle Scholar
  80. 80.
    Armold PL, Mcnullon MW, Rieb Kühn JFE (2015) C-H bond activation by f-block complexes. Angew Chem Int Ed 54:82–100CrossRefGoogle Scholar
  81. 81.
    Cavaliere VN, Wicker BF, Mindiola DJ (2012) Homogeneous organometallic chemistry of methane. Adv Organomet Chem 60:1–47CrossRefGoogle Scholar
  82. 82.
    Schwarz H, Schröder D (2000) Concepts of metal-mediated methane functionalization. An interaction of experiment and theory. Pure Appl Chem 72:2319–2332CrossRefGoogle Scholar
  83. 83.
    Cummins CC, Baxter SM, Wolczanski PT (1988) Methane and benzene activation via transient (tBuSiNH)2Zr = NSitBu3. J Am Chem Soc 110:8731–8733CrossRefGoogle Scholar
  84. 84.
    Sherry AE, Wayland BB (1990) Metalloradical activation of methane. J Am Chem Soc 112:1259–1261CrossRefGoogle Scholar
  85. 85.
    Wayland BB, Sherry AE (1991) Activation of methane and toluene by rhodium (II) porphyrin complexes. J Am Chem Soc 113:5305–5311CrossRefGoogle Scholar
  86. 86.
    Stahl SS, Labinger JA, Bercaw JE (1998) Homogeneous oxidation of alkanes by electrophilic late transition metals. Angew Chem Int Ed 37:2180–2192CrossRefGoogle Scholar
  87. 87.
    Zhou S, Li J, Schlangen M, Schwarz H (2016) Bond activation by metal-carbene complexes in the gas phase. Acc Chem Res 49:494–502PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Lapoutre VJF, Redlich B, van der Meer AFG, Oomens J, Bakker JM, Sweeney A, Mookherjee A, Armentrout PB (2013) Structure of the dehydrogenation products of methane activation by 5d transition metal cations. J Phys Chem A 117:4115–4126PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Tokyo Institute of TechnologyYokohamaJapan

Personalised recommendations