Skip to main content

Overview of Direct Methane Conversion to Chemicals with C–O and C–C Bonds

  • Chapter
  • First Online:
Catalysis and the Mechanism of Methane Conversion to Chemicals

Abstract

An overview of the conversion of methane to various chemicals, i.e., methanol, aromatic hydrocarbons, and olefins, via heterogeneous, homogeneous, and biological catalysts is provided, along with the social considerations and global circumstances surrounding methane conversion. The scope is mainly restricted to the “direct conversion of methane” to produce chemicals with C–O and C–C bonds, meaning that processes involving synthesis gas as an intermediate are not considered. To provide an understanding of the way in which the heterogeneous, homogeneous, and biological catalysts and their reaction environments control the formation of reaction intermediates from methane and contribute to the formation of C–O or C–C bonds to produce methanol, methanol derivatives, or hydrocarbons via the direct conversion of methane; various examples of direct methane conversion are discussed in terms of their mechanistic and functional aspects. Although no industrial processes for the direct conversion of methane to chemicals have been implemented, the development of such processes is essential from both economic development and energy security points of view. For scientists and engineers, the development of a next-generation process for direct methane conversion represents a “grand challenge” in chemistry, independent of trends in the larger world, such as the discovery of shale gas and the drive to reduce carbon dioxide emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. BP Energy Economics (2018) BP Energy Outlook, 2018 edition. https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html

  2. British Petroleum, BP (2018) Statistical review of world energy, June 2018, 67th edition. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html

  3. IEA (2018) World energy balance 2018

    Google Scholar 

  4. Bullin KA, Kroskop PE (2009) Compositional variety complicates processing plant for US shale gas. Oil Gas J 107:50–55

    CAS  Google Scholar 

  5. Schüeth F (2011) Chemical compounds for energy storage. Chemical Ingenieur Technik 83:1984–1993

    Article  CAS  Google Scholar 

  6. Huang K, Miller JB, Huber GW, Dumescic JA, Maravelias CT (2018) A general framework for the evaluation of direct nonoxidative methane conversion strategies. Joule 2:349–365

    Article  CAS  Google Scholar 

  7. Rostrup-Nielsen JR (2008) Organic reactions. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 6. Wiley-VCH, Mannheim, p 2882

    Google Scholar 

  8. Li J, He Y, Tan L, Zhang P, Peng X, Oruganti A, Yang G, Abe H, Wang Y, Tsubaki N (2018) Integrated tunable synthesis of liquid fuels via Fischer-Tropsch technology. Nature Catal 1:787–793

    Article  CAS  Google Scholar 

  9. Schwach P, Pan X, Bao X (2017) Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem Rev 117:8497–8520

    Article  PubMed  CAS  Google Scholar 

  10. Gunsalus NJ, Koppaka A, Park SH, Bischot SM, Hashiguchi BG, Perianna RA (2017) Homogeneous functionalization of methane. Chem Rev 117:8521–8573

    Article  PubMed  CAS  Google Scholar 

  11. Wang B, Albarracín-Suazo S, Pagán-Torres Y, Nikolla E (2017) Advances in methane conversion processes. Catal Today 285:147–158

    Article  CAS  Google Scholar 

  12. Ravi M, Ranocchiari M, von Bokhoven JA (2017) The direct catalytic oxidation of methane—a critical assessment. Angew Chem Int Ed 56:16464–16483

    Article  CAS  Google Scholar 

  13. Olivos-Suarez AI, Szécsényi Á, Hensen EJM, Ruiz-Maritinez J, Pidko EA, Gascon J (2016) Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: challenges and opportunities. ACS Catal 6:2965–2981

    Article  CAS  Google Scholar 

  14. Karakaya C, Kee RJ (2016) Progress in the direct catalytic conversion of methane to fuels and chemicals. Prog Energy Combust Sci 55:60–97

    Article  Google Scholar 

  15. Horn R, Schlögl R (2015) Methane activation by heterogeneous catalysis. Catal Lett 145:23–39

    Article  CAS  Google Scholar 

  16. Vollmer I, Yarulina I, Kapateijn F, Gascon J (2019) Progress in developing a structure-activity relationship for the direct aromatization of methane. ChemCatChem 11:39–52

    Article  CAS  Google Scholar 

  17. Gabrienko AA, Arzumanov SS, Tokarev AV, Danilova IG, Prosvirin IP, Kriventov VV, Zaikovski VI, Freude D, Stepanov AG (2017) Different efficiency on Zn2+ and ZnO species for methane activation on Zn-modified zeolites. ACS Catal 7:1818–1830

    Article  CAS  Google Scholar 

  18. Abate S, Barbera K, Centi G, Lazafame P, Perathoner S (2016) Disruptive catalysis by zeolites. Catal Sci Technol 6:2485–2501

    Article  CAS  Google Scholar 

  19. Ma S, Guo X, Zhao L, Scott S, Bao X (2013) Recent progress in methane dehydroaromatization: from laboratory curiosities to promising technology. J Energy Chem 22:10–20

    Article  Google Scholar 

  20. Tang P, Zlau Q, Wu Z, Ma D (2014) Methane activation: the past and future. Energy Environ Sci 7:2580–2591

    Article  CAS  Google Scholar 

  21. Shtenman AA (2016) Coordinational activation of methane and other alkanes by metal complexes. Russ Chem Bull Int Ed 65:1930–1944

    Article  CAS  Google Scholar 

  22. Lotz MD, Remy MS, Lao DB, Ariafard A, Yates BF, Canty AJ, Mayer JM, Sanford MS (2014) Formation of ethane from mono-methyl palladium (II) complexes. J Am Chem Soc 136:8237–8242

    Article  PubMed  CAS  Google Scholar 

  23. Citek C, Herres-Pawlis S, Daniel T, Stack P (2015) Low temperature synthesis and reactivity of Cu2O2 models. Acc Chem Res 48:2424–2433

    Article  PubMed  CAS  Google Scholar 

  24. Perianna RA, Bhalla G, Tenn WT III, Yong KJH, Kiu XY, Mironov O, Jones CJ, Ziatdinov VR (2004) Perspective on some challenges and approaches for developing the next generation of selective low temperature, oxidation catalysts for alkane hydroxylation based on the C-H activation reaction. J Mol Catal A: Chem 220:7–25

    Article  CAS  Google Scholar 

  25. Cavaliere VN, Mindiola DJ (2012) Methane: a new frontier in organometallic chemistry. Chem Sci 3:3356–3365

    Article  CAS  Google Scholar 

  26. Schwarz H (2014) How and why do cluster size, charge state and ligands affect the course of metal mediated gas-phase activation of methane. Isr J Chem 54:1413–1431

    Article  CAS  Google Scholar 

  27. Golisz SR, Gunnoe TB, Goddard WA III, Groves JT, Perianna RA (2011) Chemistry in the center for catalytic hydrocarbon functionalization: an energy frontier research center. Catal Lett 141:213–221

    Article  CAS  Google Scholar 

  28. Olah GA, Surya Prakash GK, Sommer J (1985) Superacids. Wiley, Wiley Interscience Publication

    Google Scholar 

  29. Olah GA, Surya Prakash GK, Sommer J (1979) Superacids. Science 206:13–20

    Article  PubMed  CAS  Google Scholar 

  30. Olah GA (1973) Carbocations and electrophilic reactions. Angew Chem Inter Ed 12:173–254

    Article  Google Scholar 

  31. Jansiewski AJ, Que L (2018) Dioxygen activation by nonheme diiron enzymes: diverse dioxygen adducts, high-valent intermediate, and related model complexes. Chem Rev 118:2554–2592

    Article  CAS  Google Scholar 

  32. Zhang S, Karthikeyan R, Fernando SD (2017) Low-temperature biological activation of methane: structure, function and molecular interactions of soluble and particulate methane monooxygenases. Rev Environ Sci Biotechnol 16:611–623

    Article  CAS  Google Scholar 

  33. Wang VCC, Maji S, Chen PPY, Lee HK, Yu SSF, Chan SI (2017) Alkane oxidation: methane monooxygenases, related enzymes, and their biomimetics. Chem Rev 117:8574–8621

    Article  PubMed  CAS  Google Scholar 

  34. Wang W, Liang AD, Lippard SJ (2015) Coupling oxygen consumption with hydrocarbon oxidation in bacterial multicomponent monooxygenases. Acc Chem Res 48:2632–2639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Haynes CA, Gonzalez R (2014) Rethinking biological activation of methane and conversion to liquid fuels. Nat Chem Biol 10:331–339

    Article  PubMed  CAS  Google Scholar 

  36. Sirajuddin S, Rosenzweig AC (2015) Enzymatic oxidation of methane. Biochemistry 54:2283–2294

    Article  PubMed  CAS  Google Scholar 

  37. Bjorck CE, Dobson PD, Pandhal J (2018) Biotechnological conversion of methane to methanol: evaluation of progress and potential. AIMS Bioeng 5:1–38

    Article  CAS  Google Scholar 

  38. Xu J, Zheng A, Wang X, Qi G, Su J, Du J, Gan Z, Wu J, Wang W, Deng F (2012) Room temperature activation of methane over Zn modified H-ZSM-5 zeolites: insight from solid-state NMR and theoretical calculations. Chem Soc 3:2932–2940

    CAS  Google Scholar 

  39. Bango A, Saielli G (2011) Relative DFT calculations of the NMR properties and reactivity of transition metal σ-complexes insight on C-H bond activation. Phys Chem Chem Phys 13:4285–4291

    Article  CAS  Google Scholar 

  40. Gabrienko AA, Arzumanov SS, Morzo IB, Toktarev AV, Wang W, Stepanov AG (2013) Methane activation and transformation on Ag/H-ZSM-5zeolite studied with solid-state NMR. J Phys Chem C 117:7690–7702

    Article  CAS  Google Scholar 

  41. Yoshizawa K (2013) Quantum chemical studies on dioxygen activation and methane hydroxylation by diiron and dicopper species as well as related metal-oxo species. Bull Chem Soc Jpn 86:1083–1116

    Article  CAS  Google Scholar 

  42. Latimer AA, Kulkarini AR, Aljama H, Montoya JH, Yoo JS, Tsai C, Abild-Pedersen F, Studt F, Norskov JK (2017) Understanding trends in C-H bond activation in heterogeneous catalysis. Nat Mater 16:225–229

    Article  PubMed  CAS  Google Scholar 

  43. Armentrout PB (2017) Methane activation by 5d transition metals: energetics mechanism and periodic trends. Chem Eur J 23:10–18

    Article  PubMed  CAS  Google Scholar 

  44. Ess DH, Goddard WA III, Perianna RA (2010) Electric, ambiphilic and nucleophilic C-H activation through transition-state and reaction pathway interaction energy decompositions. Organometallics 29:6459–6472

    Article  CAS  Google Scholar 

  45. Cruellas A, Melchiori T, Gallucci F, van Sint Annaland M (2017) Advanced reactor concept for oxidative coupling of methane. Catal Rev Sci Technol 59:234–294

    Article  CAS  Google Scholar 

  46. Mohammad Y, Penlidis A (2018) Optimization in chemical reaction engineering: oxidative coupling of methane as a case study. Ind Eng Chem Res 57:8664–8678

    Article  CAS  Google Scholar 

  47. Kondratenko EV, Peppel T, Seeburg D, Kobndratenko VA, Kalevaru N, Martin A, Wohlrab S (2017) Catal Sci Technol 7:366–381

    Article  CAS  Google Scholar 

  48. Fajardo CAG, Niznansky D, N’Guyen Y, Courson C, Roger AC (2008) Methane selective oxidation to formaldehyde with Fe-catalysts supported on silica or incorporated into the support. Catal Commun 9:864–869

    Article  CAS  Google Scholar 

  49. Zuo Z, Ramírez PJ, Senanayake SD, Liu P, Rodriguez JA (2016) Low-temperature conversion of methane to methanol on CeOx/Cu2O catalysts: water controlled activation of the C-H Bond. J Am Chem Soc 138:13810–13813

    Article  PubMed  CAS  Google Scholar 

  50. Lustemberg PG, Palomino RM, Gutiérrez RA, Grinter DC, Vorokhta M, Liu Z, Ramírez PJ, Matolín V, Ganduglia-Pirovano MV, Senanayake SD, Rodriguez JA (2018) Direct conversion of methane to methanol on Ni-Ceria surfaces: metal–support interactions and water-enabled catalytic conversion by site blocking. J Am Chem Soc 140:7681–7687

    Article  PubMed  CAS  Google Scholar 

  51. Narsimhan K, Iyoki K, Dinh K, Román-Leshkov Y (2016) Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Cent Sci 2:424–429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Liu HF, Liu RS, Liew KY, Jonson RE, Lusnford JH (1984) Partial oxidation of methane by nitrous oxide over molybdenum on silica. J Am Chem Soc 106:4117–4121

    Article  CAS  Google Scholar 

  53. Najafian A, Cundari TR (2017) Methane C-H activation via 3d metal oxide complexes with potentially redox-noninnocent pincer ligands: density functional theory study. Inorg Chem 56:12282–12290

    Article  PubMed  CAS  Google Scholar 

  54. Najafian A, Cundari TR (2018) C-H activation methane by nickel methoxide complexes: A density functional theory study. Organometallics 37:3111–3121

    Article  CAS  Google Scholar 

  55. Driscoll DJ, Martir W, Wang JW, Lusnford JH (1985) Formation of gas-phase methyl radicals over MgO. J Am Chem Soc 107:58–63

    Article  CAS  Google Scholar 

  56. Grecker D, Motagamwala AH, Rivera-Dones KR, Miller JB, Hiuber GW, Mavrikakis M, Dumesic JA (2017) Methane conversion to ethylene and aromatics on PtSn catalysts. ACS Catal 7:2088–2100

    Article  CAS  Google Scholar 

  57. Olah GA, Sclosberg RH (1968) Chemistry in super acids. I. Hydrogen exchange and polycondensation of methane and alkane in FSO3H-SbF5 (“magic acid”) solution. Protonation of alkanes and the intermediacy of CH5+ and related hydrocarbon ions. The high chemical reactivity of “paraffins” in ionic solution reaction. J Am Chem Soc 90:2726–2727

    Article  CAS  Google Scholar 

  58. Baba T, Inazu K (2006) Heterolytic dissociation of C-H bond of methane over Ag+-exchanged zeolites and conversion of methane into higher hydrocarbons in the presence of ethylene or benzene. Chem Lett 35:142–147

    Article  CAS  Google Scholar 

  59. Baba T, Komatsu N, Sawada H, Yamaguchi Y, Takahashi T, Sugisawa H, Ono Y (1999) 1H magic angle spinning NMR evidence for dissociate adsorption of hydrogen on Ag+-exchanged A- and Y-zeolites. Langmuir 15:7894–7896

    Article  CAS  Google Scholar 

  60. Guo J, Lou H, Zheng X (2009) Energy-efficient coaromatization of methane and propane. J Natural Gas Chem 18:260–272

    Article  CAS  Google Scholar 

  61. Soulivong D, Copéret C, Thivolle-Cazat J, Basset JM (2004) Cross-metathesis of propane and methane: a catalytic reaction of C-C bond cleavage of a higher alkane by methane. Angew Chem Int Ed 43:5366–5369

    Article  CAS  Google Scholar 

  62. Lunsford JH, Qiu P, Rosynek MP, Yu Z (1998) Catalytic conversion methane and ethylene to propylene. J Phys Chem B 102:167–173

    Article  CAS  Google Scholar 

  63. Adebajo MO (2007) Green chemistry perspectives of methane conversion via oxidative methylation of aromatics. Green Chem 9:526–539

    Article  CAS  Google Scholar 

  64. Kim H, Suh HM, Paik H (1992) Oxidative methylation of toluene with methane over lead-lithum-magnesium oxide catalysts. Appl Catal A General 87:115–127

    Article  CAS  Google Scholar 

  65. Stoukides M (1995) Electrochemical studies of methane activation. J Appl Electrochem 25:899–912

    Article  CAS  Google Scholar 

  66. Spinner N, Mustain WE (2013) Electrochemical methane activation and conversion to oxygenates at room temperature. ECS Trans 53:1–20

    Article  CAS  Google Scholar 

  67. Arnason L, Schmidt PS, Pandey M, Bagger A, Thygesen KS, Steprens IEL, Rossmeisl J (2018) Fundamental limitation of electrocatalytic methane conversion to methanol. Phys Chem Chem Phys 20:11152–11159

    Article  Google Scholar 

  68. Minea T, vanden Bekerom DCM, Peeters FJJ, Zoethout E, Graswinckel MF, van de Sanden MCM, Cents T, Lefferts, van Rooij LGJ (2018) Non-oxidative methane coupling to C2 hydrocarbons in a microwave plasma reactor. Plasma Process Polym 15:e1800087 (1–16)

    Google Scholar 

  69. Yang Y (2002) Methane conversion and reforming by nonthermal plasma on pins. Ind Eng Chem Res 41:5198–5926

    Google Scholar 

  70. Ogo S, Sekine Y (2017) Catalytic reaction assisted by plasma or electronic field. Chem Rec 17:726–738

    Article  PubMed  CAS  Google Scholar 

  71. Ogo S, Nakatsubo H, Iwasaki K, Sato A, Murakami K, Yabe T, Ishikawa A, Nakai H, Seine Y (2018) Electron-hopping brings lattice strain and high catalytic activity in the low-temperature oxidative coupling of methane in an electric filed. J Phys Chem C 122:2089–2096

    Article  CAS  Google Scholar 

  72. Delikonsntis E, Scapinello M, Stefanidis GD (2018) Low energy cost conversion of methane to ethylene in a hybrid plasma-catalytic reactor system. Fuel Process Technol 176:33–42

    Article  CAS  Google Scholar 

  73. Park S, Lee M, Bae J, Hong DY, Park YH, Hwang YK, Jeong MG, Kim YD (2017) Plasma-assisted no-oxidative conversion of methane over Mo/H-ZSM-5 catalyst in DBP reactor. Top Catal 60:735–742

    Article  CAS  Google Scholar 

  74. Baltrusaitis J, Jansen I, Christus JDS (2014) Renewable energy based catalytic CH4 conversion to fuels. Catal Sci Technol 4:2397–2411

    Article  CAS  Google Scholar 

  75. Shimura S, Yoshida H (2014) Semiconductor photocatalysts for non-oxidative coupling, dry reforming, and steam reforming of methane. Catal Surv Asia 18:24–33

    Article  CAS  Google Scholar 

  76. Handa H, Baba T, Ono Y (1998) H-D exchange between methane and deuteriated potassium amide supported on alumina. J Chem Soc, Faraday Trans 94:451–454

    Article  CAS  Google Scholar 

  77. Eller K, Schwarz H (1991) Organometallic chemistry in the gas phase. Chem Rev 91:1121–1177

    Article  CAS  Google Scholar 

  78. Schwarz H, Shaik S, Li J (2017) Electronic effect on room-temperatures, Gas-phase C-H bond activation by cluster oxides and metal carbide: the methane challenges. J Am Chem Soc 139:17201–17212

    Article  PubMed  CAS  Google Scholar 

  79. Labinger JA, Bercaw JE (2002) Understanding and exploiting C-H bond activation. Nature 417:507–514

    Article  PubMed  CAS  Google Scholar 

  80. Armold PL, Mcnullon MW, Rieb Kühn JFE (2015) C-H bond activation by f-block complexes. Angew Chem Int Ed 54:82–100

    Article  CAS  Google Scholar 

  81. Cavaliere VN, Wicker BF, Mindiola DJ (2012) Homogeneous organometallic chemistry of methane. Adv Organomet Chem 60:1–47

    Article  CAS  Google Scholar 

  82. Schwarz H, Schröder D (2000) Concepts of metal-mediated methane functionalization. An interaction of experiment and theory. Pure Appl Chem 72:2319–2332

    Article  CAS  Google Scholar 

  83. Cummins CC, Baxter SM, Wolczanski PT (1988) Methane and benzene activation via transient (tBuSiNH)2Zr = NSitBu3. J Am Chem Soc 110:8731–8733

    Article  CAS  Google Scholar 

  84. Sherry AE, Wayland BB (1990) Metalloradical activation of methane. J Am Chem Soc 112:1259–1261

    Article  CAS  Google Scholar 

  85. Wayland BB, Sherry AE (1991) Activation of methane and toluene by rhodium (II) porphyrin complexes. J Am Chem Soc 113:5305–5311

    Article  CAS  Google Scholar 

  86. Stahl SS, Labinger JA, Bercaw JE (1998) Homogeneous oxidation of alkanes by electrophilic late transition metals. Angew Chem Int Ed 37:2180–2192

    Article  Google Scholar 

  87. Zhou S, Li J, Schlangen M, Schwarz H (2016) Bond activation by metal-carbene complexes in the gas phase. Acc Chem Res 49:494–502

    Article  PubMed  CAS  Google Scholar 

  88. Lapoutre VJF, Redlich B, van der Meer AFG, Oomens J, Bakker JM, Sweeney A, Mookherjee A, Armentrout PB (2013) Structure of the dehydrogenation products of methane activation by 5d transition metal cations. J Phys Chem A 117:4115–4126

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihide Baba .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baba, T., Miyaji, A. (2020). Overview of Direct Methane Conversion to Chemicals with C–O and C–C Bonds. In: Catalysis and the Mechanism of Methane Conversion to Chemicals. Springer, Singapore. https://doi.org/10.1007/978-981-15-4132-2_1

Download citation

Publish with us

Policies and ethics