Skip to main content

Abstract

Sweat pores on fingerprints have proven to be discriminative features and have recently been successfully employed in automatic fingerprint recognition systems (AFRS). It is crucial to extract pores precisely to achieve high recognition accuracy. In this chapter two extraction methods will be given. The first method is based on a dynamic anisotropic pore model, which describes pores more accurately by using orientation and scale parameters. Most of previous pore extraction methods detect pores by using a static isotropic pore model; however, their detection accuracy is not satisfactory due to the limited approximation capability of static isotropic models to various types of pores. An adaptive pore extraction method is then developed based on the dynamic anisotropic pore model. It first divides the fingerprint image into well-defined, ill-posed, and background blocks. According to the dominant ridge orientation and frequency on each foreground block, a local instantiation of appropriate pore model is obtained. Finally, the pores are extracted by filtering the block with the adaptively generated pore model. The second method is a novel coarse-to-fine detection method based on convolutional neural networks (CNN) and logical operation. More specifically, pore candidates are coarsely estimated using logical operation at first; then, coarse pore candidates are further computed through well-trained CNN models; precise pore locations are finally refined by logical and morphological operation. Extensive experiments are performed on high resolution fingerprint databases. The results demonstrate that both the two methods can detect pores accurately and robustly, and consequently improve the fingerprint recognition accuracy of pore- based AFRS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yoon, S., Jain, A.K.: Longitudinal study of fingerprint recognition. Proc. Natl. Acad. Sci. U. S. A. 112(28), 8555 (2015)

    Article  Google Scholar 

  2. Xu, P., Yan, Y.: HPTLC fingerprint identification of commercial ginseng drugs - reinvestigation of HPTLC of ginsenosides. J. High Resolut. Chromatogr. 10(11), 607–613 (2015)

    Google Scholar 

  3. Liu, F., Zhang, D., Shen, L.: Study on novel curvature features for 3D fingerprint recognition. Neurocomputing. 168(C), 599–608 (2015)

    Article  Google Scholar 

  4. Ratha, N., Bolle, R.: Automatic Fingerprint Recognition Systems. Springer, New York (2004)

    Book  Google Scholar 

  5. Ratha, K., Karu, K., Chen, S., Jain, A.K.: A real-time matching system for large fingerprint databases. IEEE Trans. Pattern Anal. Mach. Intell. 18, 799–813 (1996)

    Article  Google Scholar 

  6. Jain, A., Hong, L., Bolle, R.: On-line fingerprint verification. IEEE. Trans. Pattern Recogn. Mach. Intell. 19(4), 302–314 (1997)

    Article  Google Scholar 

  7. Jain, A.K., Chen, Y., Demirkus, M.: Pores and ridges: fingerprint matching using level 3 features. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 15–27 (2007)

    Article  Google Scholar 

  8. Ross, A., Jain, A., Reisman, J.: A hybrid fingerprint matcher. Pattern Recogn. 36, 1661–1673 (2003)

    Article  Google Scholar 

  9. He, Y., Tian, J., Li, L., Chen, H., Yang, X.: Fingerprint matching based on global comprehensive similarity. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 850–862 (2006)

    Article  Google Scholar 

  10. CDEFFS.: Data Format for the Interchange of Extended Fingerprint and Palmprint Features. Working Draft Version 0.4 (2009). Available at http://fingerprint.nist.gov/standard/cdeffs/index.htmlS

  11. Roddy, A., Stosz, J.: Fingerprint features – statistical analysis and system performance estimates. Proc. IEEE. 85, 1390–1421 (1997)

    Article  Google Scholar 

  12. Parsons, N.R., Smith, J.Q., Thonnes, E., Wang, L., Wilson, R.G.: Rotationally invariant statistics for examining the evidence from the pores in fingerprints. Law Probab. Risk. 7, 1–14 (2008)

    Article  Google Scholar 

  13. Stosz, J.D., Alyea, L.A.: Automated system for fingerprint authentication using pores and ridge structure. In: Proceedings of the SPIE Conference on Automatic Systems for the Identification and Inspection of Humans, pp. 210–223, San Diego (1994)

    Google Scholar 

  14. Kryszczuk, K., Drygajlo, A., Morier, P.: Extraction of level 2 and level 3 features for fragmentary fingerprints. In: Proceedings of the 2nd COST Action 275 Workshop, pp 83–88. (2004)

    Google Scholar 

  15. Kryszczuk, K., Morier, P., Drygajlo, A.: “Study of the distinctiveness of level 2 and level 3 features in fragmentary fingerprint comparison.” In: BioAW2004, LNCS 3087, pp. 124–133. (2004)

    Chapter  Google Scholar 

  16. Jain, A.K., Chen, Y., Demirkus, M.: Pores and ridges: Fingerprint matching using level 3 features. In: Proceedings of ICPR06, pp. 477–480 (2006)

    Google Scholar 

  17. Zhao, Q., Zhang, L., Zhang, D., Luo, N.: Direct pore matching for fingerprint recognition. Adv. Biometrics ICB. 5558, 597–606 (2009)

    Article  Google Scholar 

  18. Jain, A.K., Chen, Y., Demirkus, M.: Pores and ridges: high-resolution fingerprint matching using level 3 features. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 15–27 (2007)

    Article  Google Scholar 

  19. Liu, F., Zhao, Q., Zhang, L., Zhang, D.: Fingerprint pore matching based on sparse representation. In: Proceedings of the 20th International Conference on Pattern Recognition, (2010)

    Google Scholar 

  20. Liu, F., Zhao, Q., Zhang, D.: A novel hierarchical fingerprint matching approach. Pattern Recogn. 44(8), 1604–1613 (2011)

    Article  Google Scholar 

  21. Liu, F., Zhao, Y., Shen, L.: Feature guided fingerprint pore matching. In: Zhou, J., et al. (eds.) CCBR 2017. LNCS, vol. 10568, pp. 334–343. Springer, Cham. (2017) https://doi.org/10.1007/978-3-319-69923-3_36

    Chapter  Google Scholar 

  22. Zhao, Q., Zhang, D., Zhang, L., Luo, N.: Adaptive fingerprint pore modeling and extraction. Pattern Recogn. 43(8), 2833–2844 (2010)

    Article  Google Scholar 

  23. Ray, M., Meenen, P., Adhami, R.: A novel approach to fingerprint pore extraction. In: Proceedings of the 37th South-eastern Symposium on System Theory, pp. 282–286 (2005)

    Google Scholar 

  24. Abhyankar, A., Schuckers, S.: Towards integrating level-3 Features with perspiration pattern for robust fingerprint recognition. In: IEEE International Conference on Image Processing, vol. 59, no. 1, pp. 3085–3088. IEEE (2010)

    Google Scholar 

  25. Malathi, S., Maheswari, S., Meena, C.: Fingerprint pore extraction based on marker controlled watershed segmentation. In: The International Conference on Computer and Automation Engineering, vol. 3, pp. 337–340. IEEE (2010)

    Google Scholar 

  26. Da Silva Teixeira, R.F., Leite, N.J: On adaptive fingerprint pore extraction. In: Kamel M., Campilho A. (eds.) ICIAR 2013. LNCS, vol. 7950, pp. 72–79. Springer, Heidelberg. (2013). https://doi.org/10.1007/978-3-642-39094-4_9

    Google Scholar 

  27. Xu, Y., Lu, G., Liu, F., Li, Y.: Fingerprint pore extraction based on multi-scale morphology. In: Zhou, J. et al. (eds.) CCBR 2017. LNCS, vol. 10568, pp. 288–295. Springer, Cham. (2017) https://doi.org/10.1007/978-3-319-69923-3_31

    Chapter  Google Scholar 

  28. Labati, R., Genovese, A., Muñoz, E., Piuri, V., Scotti, F.: “A novel pore extraction method for heterogeneous fingerprint images using convolutional neural networks.” Pattern Recogn. Lett. (2017)

    Google Scholar 

  29. Wang, H., Yang, X., Ma, L., Liang, R.: Fingerprint pore extraction using U-Net based fully convolutional network. In: Zhou, J. et al. (eds.) CCBR 2017. LNCS, vol. 10568, pp. 279–287. Springer, Cham (2017). doi:https://doi.org/10.1007/978-3-319-69923-3_30

    Chapter  Google Scholar 

  30. Jang, H., Kim, D., Mun, S., Choi, S., Lee, H.: Deeppore: fingerprint pore extraction using deep convolutional neural networks. IEEE Signal Process. Lett. 24(12), 1808–1812 (2017)

    Article  Google Scholar 

  31. Krizhevsky, A., Sutskever, I., Hinton, I.G.: ImageNet classification with deep convolutional neural networks. Int. Conf. Neural Infor. Proces. Syst. 60(2), 1097–1105 (2012)

    Google Scholar 

  32. Zhao, Q., Zhang, D., Zhang, L., Luo, N.: High resolution partial fingerprint alignment using pore-valley descriptors. Pattern Recogn. 43(3), 1050–1061 (2010)

    Article  Google Scholar 

  33. Ashbaugh, D.R.: Quantitative–Qualitative Friction Ridge Analysis: An Introduction to Basic and Advanced Ridgeology. CRC Press LLC (1999)

    Google Scholar 

  34. Sofka, M., Stewart, C.V.: Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Trans. Med. Imaging. 25, 1531–1546 (2006)

    Article  Google Scholar 

  35. Bazen, A.M., Gerez, S.H.: Systematic methods for the computation of the directional fields and singular points of fingerprints. IEEE Trans. Pattern Anal. Mach. Intell. 24, 905–919 (2002)

    Article  Google Scholar 

  36. Hong, L., Wan, Y., Jain, A.K.: Fingerprint image enhancement: algorithms and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 777–789 (1998)

    Article  Google Scholar 

  37. Chen, Y., Dass, S., Jain, A.: Fingerprint quality indices for predicting authentication performance. In: Proceedings of AVBPA, pp. 160–170 (2005)

    Google Scholar 

  38. Zhao, Q., Zhang, L., Zhang, D., Luo, N.: Direct pore matching for fingerprint recognition. In: Proceedings of ICB, pp. 597–606 (2009)

    Chapter  Google Scholar 

  39. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd ed. Cambridge University (2006)

    Google Scholar 

  40. Bernsen, J.: Dynamic Thresholding of Grey-Level Images. In: International Conference on Pattern Recognition (1986)

    Google Scholar 

  41. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, London (2009). https://doi.org/10.1007/978-1-84882-254-2

    Book  MATH  Google Scholar 

  42. Lin, H., Wan, Y., Jain, A.K.: Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 777–789 (1998)

    Article  Google Scholar 

  43. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Comput. Sci. (2014)

    Google Scholar 

  44. Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving neural networks by preventing co-adaptation of feature detectors. Comput. Sci. 3(4), 212–223 (2012)

    Google Scholar 

  45. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.: Caffe: convolutional architecture for fast feature embedding, pp. 675–678 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, F., Zhao, Q., Zhang, D. (2020). Fingerprint Pore Extraction. In: Advanced Fingerprint Recognition: From 3D Shape to Ridge Detail. Springer, Singapore. https://doi.org/10.1007/978-981-15-4128-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4128-5_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4127-8

  • Online ISBN: 978-981-15-4128-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics