Skip to main content

Abstract

Human fingers are 3D objects. More information will be provided if three dimensional (3D) fingerprints are available compared with two dimensional (2D) fingerprints. Thus, this chapter firstly collected 3D finger point cloud data by Structured-light Illumination method. Additional features from 3D fingerprint images are then studied and extracted. The applications of these features are finally discussed. A series of experiments are conducted to demonstrate the helpfulness of 3D information to fingerprint recognition. Results show that a quick alignment can be easily implemented under the guidance of 3D finger shape feature even though this feature does not work for fingerprint recognition directly. The newly defined distinctive 3D shape ridge feature can be used for personal authentication with Equal Error Rate (EER ) of ~8.3%. Also, it is helpful to remove false core point. Furthermore, a promising of EER ~1.3% is realized by combining this feature with 2D features for fingerprint recognition which indicates the prospect of 3D fingerprint recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maltoni, D., et al.: Handbook of Fingerprint Recognition. Springer, New York (2009)

    Google Scholar 

  2. Parziale, G., Diaz-Santana, E., Hauke, R.: The surround imager tm: A multi-camera touchless device to acquire 3D rolled-equivalent fingerprints. International Conference on Biometrics. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  3. Fatehpuria, A., Lau, D.L., Hassebrook L.G.: Acquiring a 2D rolled equivalent fingerprint image from a non-contact 3D finger scan. In: Biometric Technology for Human Identification III, vol. 6202. International Society for Optics and Photonics (2006)

    Google Scholar 

  4. Xie, W., Song, Z., Zhang, X.: A novel photometric method for real-time 3D reconstruction of fingerprint. International Symposium on Visual Computing. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  5. Wang, Y., Lau, D.L., Hassebrook, L.G.: Fit-sphere unwrapping and performance analysis of 3d fingerprints. Appl. Opt. 49(4), 592–600 (2010)

    Google Scholar 

  6. Wang, Y., Hassebrook, L.G., Lau, D.L.: Data acquisition and processing of 3-D fingerprints. IEEE Trans. Inf. Forensics Secur. 5(4), 750–760 (2010)

    Google Scholar 

  7. Troy, M., et al.: Non-contact 3D fingerprint scanner using structured light illumination. Emerging digital micromirror device based systems and applications III, vol. 7932. International Society for Optics and Photonics (2011)

    Google Scholar 

  8. TBS.: http://www.tbs-biometrics.com. Accessed Nov 2013

  9. FlashScan.: http://www.FlashScan3D.co. Accessed Nov 2013

  10. Kumar, A., Kwong, C.: Towards contactless, low-cost and accurate 3D fingerprint identification. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 37(3), 681–696 (2013)

    Google Scholar 

  11. Pang, X., Song, Z., Xie, W.: Extracting valley-ridge lines from point-cloud-based 3D fingerprint models. IEEE Comput. Graph. Appl. 33(4), 73–81 (2012)

    Google Scholar 

  12. Huang, S., et al.: 3D fingerprint imaging system based on full-field fringe projection profilometry. Opt. Lasers Eng. 52, 123–130 (2014)

    Google Scholar 

  13. Liu, F., Zhang, D., Shen, L.: Study on novel curvature features for 3D fingerprint recognition. Neurocomputing. 168, 599–608 (2015)

    Google Scholar 

  14. Zhang, D., et al.: Robust palmprint verification using 2D and 3D features. Pattern Recogn. 43(1), 358–368 (2010)

    MATH  Google Scholar 

  15. Srinivasan, V., Liu, H.-C., Halioua, M.: Automated phase-measuring profilometry of 3-D diffuse objects. Appl. Opt. 23(18), 3105–3108 (1984)

    Google Scholar 

  16. Liu, F., Zhang, D.: 3D fingerprint reconstruction system using feature correspondences and prior estimated finger model. Pattern Recogn. 47(1), 178–193 (2014)

    Google Scholar 

  17. Zhang, D., et al.: 3D biometrics, 1st edn, pp. 171–230. Springer New York Press, New York (2013)

    Google Scholar 

  18. Liu, F.: New Generation of Automated Fingerprint Recognition System. Dissertation. The Hong Kong Polytechnic University (2014)

    Google Scholar 

  19. Parziale, G., Niel, A.: A fingerprint matching using minutiae triangulation. International Conference on Biometric Authentication. Springer, Berlin/Heidelberg (2004)

    Google Scholar 

  20. Liu, L.-M.: Fingerprint orientation alignment and similarity measurement. Imaging Sci. J. 55(2), 114–125 (2007)

    Google Scholar 

  21. Lindoso, A., et al.: Correlation-based fingerprint matching with orientation field alignment. International Conference on BIOMETRICS. Springer, Berlin/Heidelberg (2007)

    Google Scholar 

  22. Wang, L., Bhattacharjee, N., Srinivasan, B.: A method for fingerprint alignment and matching. In: Proceedings of the 10th International Conference on Advances in Mobile Computing & Multimedia (2012)

    Google Scholar 

  23. Yager, N., Amin, A.: Fingerprint alignment using a two stage optimization. Pattern Recogn. Lett. 27(5), 317–324 (2006)

    Google Scholar 

  24. Zhao, Q., et al.: High resolution partial fingerprint alignment using pore-valley descriptors. Pattern Recogn. 43(3), 1050–1061 (2010)

    MATH  Google Scholar 

  25. Liu, F., Zhang, D., Guo, Z.: Distal-interphalangeal-crease-based user authentication system. IEEE Trans. Inf. Forensics Secur. 8(9), 1446–1455 (2013)

    Google Scholar 

  26. Kong, A.W.K., Zhang, D.: Competitive coding scheme for palmprint verification. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 1. IEEE (2004)

    Google Scholar 

  27. Wong, W.K., et al.: Joint tensor feature analysis for visual object recognition. IEEE Trans. Cybern. 45(11), 2425–2436 (2014)

    Google Scholar 

  28. Zhu, Z., et al.: Three-dimensional Gabor feature extraction for hyperspectral imagery classification using a memetic framework. Inf. Sci. 298, 274–287 (2015)

    Google Scholar 

  29. Shi, X., et al.: Face recognition by sparse discriminant analysis via joint L2, 1-norm minimization. Pattern Recogn. 47(7), 2447–2453 (2014)

    Google Scholar 

  30. Shen, L., Bai, L., Ji, Z.: FPCODE: An efficient approach for multi-modal biometrics. Int. J. Pattern Recognit. Artif. Intell. 25(02), 273–286 (2011)

    MathSciNet  Google Scholar 

  31. Lu, X., Yuan, Y., Zheng, X.: Joint dictionary learning for multispectral change detection. IEEE Trans. Cybern. 47(4), 884–897 (2016)

    Google Scholar 

  32. Yuan, Y., Mou, L., Lu, X.: Scene recognition by manifold regularized deep learning architecture. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2222–2233 (2015)

    MathSciNet  Google Scholar 

  33. Guo, Z., et al.: Robust texture image representation by scale selective local binary patterns. IEEE Trans. Image Process. 25(2), 687–699 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Shi, X., et al.: A framework of joint graph embedding and sparse regression for dimensionality reduction. IEEE Trans. Image Process. 24(4), 1341–1355 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Gu, B., Sheng, V.S.: A robust regularization path algorithm for v-support vector classification. IEEE Trans. Neural Netw. Learn. Syst. 28(5), 1241–1248 (2016)

    Google Scholar 

  36. Gu, B., et al.: Incremental support vector learning for ordinal regression. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1403–1416 (2014)

    MathSciNet  Google Scholar 

  37. Gu, B., et al.: Incremental learning for v-support vector regression. Neural Netw. 67, 140–150 (2015)

    MATH  Google Scholar 

  38. Do, Q., Martini, B., Choo, K.-K.R.: A data exfiltration and remote exploitation attack on consumer 3D printers. IEEE Trans. Inf. Forensics Secur. 11(10), 2174–2186 (2016)

    Google Scholar 

  39. Kumari, S., et al.: Design of a provably secure biometrics-based multi-cloud-server authentication scheme. Futur. Gener. Comput. Syst. 68, 320–330 (2017)

    Google Scholar 

  40. Peng, J., Choo, K.-K.R., Ashman, H.: User profiling in intrusion detection: a review. J. Netw. Comput. Appl. 72, 14–27 (2016)

    Google Scholar 

  41. Yuan, C., Sun, X., Lv, R.: Fingerprint liveness detection based on multi-scale LPQ and PCA. China Commun. 13(7), 60–65 (2016)

    Google Scholar 

  42. Zhou, Z., et al.: Effective and efficient global context verification for image copy detection. IEEE Trans. Inf. Forensics Secur. 12(1), 48–63 (2016)

    Google Scholar 

  43. Fu, Z., et al.: Toward efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy improvement. IEEE Trans. Inf. Forensics Secur. 11(12), 2706–2716 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, F., Zhao, Q., Zhang, D. (2020). Applications of 3D Fingerprints. In: Advanced Fingerprint Recognition: From 3D Shape to Ridge Detail. Springer, Singapore. https://doi.org/10.1007/978-981-15-4128-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4128-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4127-8

  • Online ISBN: 978-981-15-4128-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics