Skip to main content

Abstract

This chapter addresses the problem of feature-based 3D reconstruction model for close-range objects. Since it is almost impossible to find pixel-to-pixel correspondences from 2D images by algorithms when the object is imaged on a close range, the selection of feature correspondences, as well as the number and distribution of them, play important roles in the reconstruction accuracy. Then, features on representative objects are analyzed and discussed. The impact of the number and distribution of feature correspondences is analyzed by reconstructing an object with standard cylinder shape by following the reconstruction model introduced in this chapter. After that, three criteria are set to guide the selection of feature correspondences for more accurate 3D reconstruction. These criteria are finally applied to the human finger since it is a typical close-range object and different number and distribution of feature correspondences can be established automatically from its 2D fingerprints. The effectiveness of the setting criteria is demonstrated by comparing the accuracy of reconstructed finger shape based on different fingerprint feature correspondences with the corresponding 3D point cloud data obtained by structured light illumination (SLI) technique which is taken as a ground truth in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rusinkiewicz, S., Hall-Holt, O., Levoy, M.: Real-time 3D model acquisition. ACM Trans. Graph. (TOG). 21(3), 438–446 (2002)

    Article  Google Scholar 

  2. Bradley, B.D., Chan, A.D.C, Hayes, M.J.D:. A simple, low cost, 3D scanning system using the laser light-sectioning method. 2008 IEEE Instrumentation and Measurement Technology Conference. IEEE (2008)

    Google Scholar 

  3. Wu, Q., et al.: A 3D modeling approach to complex faults with multi-source data. Comput. Geosci. 77, 126–137 (2015)

    Article  Google Scholar 

  4. Wang, Y., Hassebrook, L.G., Lau, D.L.: Data acquisition and processing of 3-D fingerprints. IEEE Trans. Inf. Forensics Secur. 5(4), 750–760 (2010)

    Article  Google Scholar 

  5. Stockman, G.C., et al.: Sensing and recognition of rigid objects using structured light. IEEE Control. Syst. Mag. 8(3), 14–22 (1988)

    Article  Google Scholar 

  6. Hu, G., Stockman, G.: 3-D surface solution using structured light and constraint propagation. IEEE Trans. Pattern Anal. Mach. Intell. 11(4), 390–402 (1989)

    Article  Google Scholar 

  7. Horn Berthold, K.P.: Shape from shading: A Method for Obtaining the Shape of a Smooth Opaque Object from One View (1970)

    Google Scholar 

  8. Zhang, R., et al.: Shape-from-shading: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 690–706 (1999)

    Article  Google Scholar 

  9. Worthington, P.L.: Reillumination-driven shape from shading. Comput. Vis. Image Underst. 98(2), 325–343 (2005)

    Article  Google Scholar 

  10. Akimoto, T., Suenaga, Y., Wallace, R.S.: Automatic creation of 3D facial models. IEEE Comput. Graph. Appl. 13(5), 16–22 (1993)

    Article  Google Scholar 

  11. Lao, S., et al.: Building 3D facial models and detecting face pose in 3D space. Second International Conference on 3-D Digital Imaging and Modeling (Cat. no. PR00062). IEEE (1999)

    Google Scholar 

  12. Brodsky, T., Fermuller, C., Aloimonos, Y.: Shape from video. In: Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. no PR00149), vol. 2. IEEE (1999)

    Google Scholar 

  13. Strecha, C., et al.: Shape from video vs still images. Proc. Opti. 3D Meas. Tech. 2, 168–175 (2003)

    Google Scholar 

  14. Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 191139 (1980)

    Article  Google Scholar 

  15. Rushmeier, H., Taubin, G., Guéziec, A.: Applying Shape from Lighting Variation to Bump Map Capture Rendering techniques, vol. 97, pp. 35–44. Springer, Vienna (1997)

    Google Scholar 

  16. Malzbender, T., et al.: Surface enhancement using real-time photometric stereo and reflectance transformation. Rendering techniques 2006: 17th (2006)

    Google Scholar 

  17. Grün, A.: Semi-automated approaches to site recording and modeling. IAPRS. 33, 309–318 (2000)

    Google Scholar 

  18. Bradley, B.D., Chan, A.D.C., Hayes, M.J.D.: A simple, low cost, 3D scanning system using the laser light-sectioning method. 2008 IEEE Instrumentation and Measurement Technology Conference. IEEE (2008)

    Google Scholar 

  19. Paris, S.: Methods for 3D Reconstruction from Multiple Images. Cambridge, Massachussets Institute of Technology. [online] Disponible en https://people.csail.mit.edu/sparis/talks/Paris_06_3D_Reconstruction.pdf. Consultado el 29.06(2006) (2018)

  20. Said, A.Md, Hasbullah, H., Baharudin, B.: Image-based modeling: A review. J. Theor. Appl. Inf. Technol. 5(2) (2009)

    Google Scholar 

  21. Remondino, F., Hakim, S.-E.: Image-based 3D modelling: A review. Photogramm. Rec. 21(115), 269–291 (2006)

    Article  Google Scholar 

  22. Udayan, J.D., Kim, H.S., Kim, J.-I.: Animage-based approach to the reconstruction of ancient architectures by extracting and arranging 3D spatial components. Front. Inf. Technol. Electron. Eng. 16(1), 12–27 (2015)

    Article  Google Scholar 

  23. Grün, A., Remondino, F., Zhang, L.: Photogrammetric reconstruction of the great Buddha of Bamiyan, Afghanistan. Photogramm. Rec. 19(107), 177–199 (2004)

    Article  Google Scholar 

  24. Zhu, S., Xia, Y.: 3D Simulation and Reconstruction of Large-Scale Ancient Architecture with Techniques of Photogrammetry and Computer Science (2005)

    Google Scholar 

  25. Zhang, R., et al.: Shape-from-shading: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 690–706 (1999)

    Article  Google Scholar 

  26. Poggio, G.F., Poggio, T.: The analysis of stereopsis. Annu. Rev. Neurosci. 7(1), 379–412 (1984)

    Article  Google Scholar 

  27. Hartley, R.I., Mundy, J.L.: Relationship between photogrammmetry and computer vision. In: Integrating Photogrammetric Techniques with Scene Analysis and Machine Vision, vol. 1944. International Society for Optics and Photonics (1993)

    Google Scholar 

  28. Henrichsen, Arne. 3D Reconstruction and Camera Calibration from 2D Images. Dissertations. University of Cape Town, (2000)

    Google Scholar 

  29. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge university press, New York (2003)

    MATH  Google Scholar 

  30. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  31. Bouguet, J.: First calibration example – corner extraction, calibration, additional tools. Camera Calibration Toolbox for Matlab. www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html

  32. Correspondence Problem. Wikipedia, Wikimedia Foundation, 8 Oct.2019. http://en.wikipedia.org/wiki/Correspondence_problem#Basic_Method

  33. Ogale, A.S., Aloimonos, Y.: Shape and the stereo correspondence problem. Int. J. Comput. Vis. 65(3), 147–162 (2005)

    Article  Google Scholar 

  34. Belhumeur, P.N., Mumford, D.: A Bayesian treatment of the stereo correspondence problem using half-occluded regions. CVPR. 506, 512 (1992)

    Google Scholar 

  35. Liu, F., et al.: Touchless multiview fingerprint acquisition and mosaicking. IEEE Trans. Instrum. Meas. 62(9), 2492–2502 (2013)

    Article  Google Scholar 

  36. Wang, Y., Hassebrook, L.G., Lau, D.L.: Data acquisition and processing of 3-D fingerprints. IEEE Trans. Inf. Forensics Secur. 5(4), 750–760 (2010)

    Article  Google Scholar 

  37. Zhang, D., et al.: Robust palmprint verification using 2D and 3D features. Pattern Recogn. 43(1), 358–368 (2010)

    Article  Google Scholar 

  38. Choi, H., Choi, K., Kim, J.: Mosaicing touchless and mirror-reflected fingerprint images. IEEE Trans. Inf. Forensics Secur. 5(1), 52–61 (2010)

    Article  Google Scholar 

  39. Jain, A., Hong, L., Bolle, R.: On-line fingerprint verification. IEEE Trans. Pattern Anal. Mach. Intell. 19(4), 302–314 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, F., Zhao, Q., Zhang, D. (2020). 3D Fingerprint Generation. In: Advanced Fingerprint Recognition: From 3D Shape to Ridge Detail. Springer, Singapore. https://doi.org/10.1007/978-981-15-4128-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4128-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4127-8

  • Online ISBN: 978-981-15-4128-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics