Skip to main content

A Review on Security and Privacy Concern in IoT Health Care

  • Chapter
  • First Online:
Internet of Things for Healthcare Technologies

Part of the book series: Studies in Big Data ((SBD,volume 73))

Abstract

Internet of things (IoT) is one of the most optimistic technologies that have remarkably changed the concept of the healthcare industry which offers a huge added value in the identification of diseases and monitoring the patient remotely. The research community and the public sector are very much focused on this application domain to develop various e-health regulations and policies. However, IoT-based healthcare systems suffer from several security issues that are varied from other domains in terms of methodologies, motivations, and consequences, due to the complexity of the environment and the nature of the deployed devices. The expansion of healthcare IoT devices, along with the absence of network segmentation, inadequate access controls, and dependency on legacy systems has widen attack area for cybercriminals to exploit or steal personally identifiable information (PII) and protected health information (PHI) without interrupting healthcare information transmission processes. Predicting attacks quantitatively may reduce the risk of fraudulent data; different approaches were noticed to identify and predict the IoT intrusions such as network metric based and machine learning approach. This work will review the related security models to identify the approaches of intrusion detection and prediction related to IoT devices as well as software connected in healthcare systems. This provides an overview of the most recent threats and security issues for IoT-based healthcare systems that may affect the efficient and effective functioning of such infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., & Qiu, D. (2014). Security of the Internet of Things: Perspectives and challenges. Wireless Networks, 20(8), 2481–2501.

    Article  Google Scholar 

  2. Padhy, R. P., Patra, M. R., & Satapathy, S. C. (2012). Design and implementation of a cloud based rural healthcare information system model. Universal Journal of Applied computer Science and Technology, 2(1), 149–157.

    Google Scholar 

  3. Kakkar, A. (2019). An IoT equipped hospital model: A new approach for E-Governance Healthcare Framework. IJMRHS, 8(3), 36–42.

    MathSciNet  Google Scholar 

  4. Gope, P., & Hwang, T. (2015). BSN-Care: A secure IoT-based modern healthcare system using body sensor network. IEEE Sensors Journal, 16(5), 1368–1376.

    Article  Google Scholar 

  5. Alqahtani, F. H. (2018). The application of the Internet of Things in healthcare. International Journal of Computers and Applications, 180(18), 19–23.

    Article  Google Scholar 

  6. Kumar, V. (2015). Ontology based public healthcare system in Internet of Things (IoT). Procedia Computer Science, 50, 99–102.

    Article  Google Scholar 

  7. Yang, G., Xie, L., Mäntysalo, M., Zhou, X., Pang, Z., Da Xu, L., et al. (2014). A health-IoT platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box. IEEE Transactions on Industrial Informatics, 10(4), 2180–2191.

    Article  Google Scholar 

  8. Jara, A. J., Zamora-Izquierdo, M. A., & Skarmeta, A. F. (2013). Interconnection framework for mHealth and remote monitoring based on the internet of things. IEEE Journal on Selected Areas in Communications, 31(9), 47–65.

    Article  Google Scholar 

  9. Castillejo, P., Martinez, J. F., Rodriguez-Molina, J., & Cuerva, A. (2013). Integration of wearable devices in a wireless sensor network for an E-health application. IEEE Wireless Communications, 20(4), 38–49.

    Article  Google Scholar 

  10. Doukas, C., & Maglogiannis, I. (2012, July). Bringing IoT and cloud computing towards pervasive healthcare. In 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (pp. 922–926). New York: IEEE.

    Google Scholar 

  11. Poenaru, E., & Poenaru, C. (2013, November). A structured approach of the Internet-of-Things eHealth use cases. In 2013 E-Health and Bioengineering Conference (EHB) (pp. 1–4). New York: IEEE.

    Google Scholar 

  12. Yang, C. T., Liu, J. C., Liao, C. J., Wu, C. C., & Le, F. Y. (2013, December). On construction of an intelligent environmental monitoring system for healthcare. In 2013 International Conference on Parallel and Distributed Computing, Applications and Technologies (pp. 246–253). New York: IEEE.

    Google Scholar 

  13. Świątek, P., & Rucinski, A. (2013, October). IoT as a service system for eHealth. In 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services (Healthcom 2013) (pp. 81–84). New York: IEEE.

    Google Scholar 

  14. Fan, Y. J., Yin, Y. H., Da Xu, L., Zeng, Y., & Wu, F. (2014). IoT-based smart rehabilitation system. IEEE Transactions on Industrial Informatics, 10(2), 1568–1577.

    Article  Google Scholar 

  15. López, P., Fernández, D., Jara, A. J., & Skarmeta, A. F. (2013, March). Survey of internet of things technologies for clinical environments. In 2013 27th International Conference on Advanced Information Networking and Applications Workshops (pp. 1349–1354). New York: IEEE.

    Google Scholar 

  16. Trcek, D., & Brodnik, A. (2013). Hard and soft security provisioning for computationally weak pervasive computing systems in e-health. IEEE Wireless Communications, 20(4), 22–29.

    Article  Google Scholar 

  17. Hu, F., Xie, D., & Shen, S. (2013, August). On the application of the internet of things in the field of medical and healthcare. In 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing (pp. 2053–2058). New York: IEEE.

    Google Scholar 

  18. Le Moullec, Y., Lecat, Y., Annus, P., Land, R., Kuusik, A., Reidla, M.,. & Ruberg, P. (2014, December). A modular 6LoWPAN-based wireless sensor body area network for health-monitoring applications. In Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific (pp. 1–4). New York: IEEE.

    Google Scholar 

  19. Mohammed, J., Lung, C. H., Ocneanu, A., Thakral, A., Jones, C., & Adler, A. (2014, September). Internet of things: Remote patient monitoring using web services and cloud computing. In 2014 IEEE International Conference on Internet of Things (iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) (pp. 256–263). New York: IEEE.

    Google Scholar 

  20. Sebestyen, G., Hangan, A., Oniga, S., & Gál, Z. (2014, May). eHealth solutions in the context of Internet of Things. In 2014 IEEE International Conference on Automation, Quality and Testing, Robotics (pp. 1–6). New York: IEEE.

    Google Scholar 

  21. Tahmasbi, A., Adabi, S., & Rezaee, A. (2016). Behavioral reference model for pervasive healthcare systems. Journal of Medical Systems, 40(12), 270.

    Article  Google Scholar 

  22. Choi, J., In, Y., Park, C., Seok, S., Seo, H., & Kim, H. (2018). Secure IoT framework and 2D architecture for End-To-End security. The Journal of Supercomputing, 74(8), 3521–3535.

    Article  Google Scholar 

  23. Xu, H., & Hua, K. (2016). Secured ECG signal transmission for human emotional stress classification in wireless body area networks. EURASIP Journal on Information Security, 2016(1), 5.

    Article  Google Scholar 

  24. Alamr, A. A., Kausar, F., Kim, J., & Seo, C. (2018). A secure ECC-based RFID mutual authentication protocol for internet of things. The Journal of Supercomputing, 74(9), 4281–4294.

    Article  Google Scholar 

  25. Ko, H., & Song, M. (2016). A study on the secure user profiling structure and procedure for home healthcare systems. Journal of Medical Systems, 40(1), 1.

    Article  Google Scholar 

  26. Lounis, A., Hadjidj, A., Bouabdallah, A., & Challal, Y. (2016). Healing on the cloud: Secure cloud architecture for medical wireless sensor networks. Future Generation Computer Systems, 55, 266–277.

    Article  Google Scholar 

  27. Das, A. T. A. N. U., & Bag, R. A. J. I. B. (2010). Wireless sensor network based monitoring systems: A review and state of art applications. International Journal of Computer Applications in Engineering Technology and Sciences 3, 1142.

    Google Scholar 

  28. Abomhara, M. (2015). Cyber security and the internet of things: Vulnerabilities, threats, intruders and attacks. Journal of Cyber Security and Mobility, 4(1), 65–88.

    Article  Google Scholar 

  29. Dewangan, K., & Mishra, M. (2018). A review: security of IOT based healthcare system, vol. 3, 25–28.

    Google Scholar 

  30. Patel, S., Singh, N., & Pandya, S. (2017). IoT based smart hospital for secure healthcare system. International Journal on Recent and Innovation Trends in Computing and Communication, 5(5), 404–408.

    Google Scholar 

  31. Hussein, D., Bertin, E., & Frey, V. (2017, March). Access control in IoT: From requirements to a candidate vision. In 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN) (pp. 328–330). New York: IEEE.

    Google Scholar 

  32. Zhou, J., Leppanen, T., Harjula, E., Ylianttila, M., Ojala, T., Yu, C., et al. (2013, June). Cloudthings: A common architecture for integrating the internet of things with cloud computing. In Proceedings of the 2013 IEEE 17th International Conference on Computer Supported Cooperative Work in Design (CSCWD) (pp. 651–657). New York: IEEE.

    Google Scholar 

  33. Ida, I. B., Jemai, A., & Loukil, A. (2016, December). A survey on security of IoT in the context of eHealth and clouds. In 2016 11th International Design & Test Symposium (IDT) (pp. 25–30). New YOrk: IEEE.

    Google Scholar 

  34. Ahmed, A., Latif, R., Latif, S., Abbas, H., & Khan, F. A. (2018). Malicious insiders attack in IoT based multi-cloud e-healthcare environment: A systematic literature review. Multimedia Tools and Applications, 77(17), 21947–21965.

    Article  Google Scholar 

  35. ul Sami, I., Ahmad, M. B., Asif, M., & Ullah, R. (2018). DoS/DDoS detection for E-Healthcare in Internet of Things 9(1), 297–300.

    Google Scholar 

  36. Cekerevac, Z., Dvorak, Z., Prigoda, L., & Cekerevac, P. (2017). Internet of things and the man-in-the-middle attacks–security and economic risks. MEST Journal, 5(2), 15–25.

    Article  Google Scholar 

  37. Stephen, R., & Arockiam, L. (2017). Intrusion detection system to detect sinkhole attack on RPL protocol in Internet of Things. IJEECSE, 4(4), 16–20.

    Google Scholar 

  38. Chifor, B. C., Bica, I., & Patriciu, V. V. (2017, June). Mitigating DoS attacks in publish-subscribe IoT networks. In 2017 9th International Conference on Electronics, Computers and Artificial Intelligence, 1–6. New York: IEEE.

    Google Scholar 

  39. Al Alkeem, E., Yeun, C. Y., & Zemerly, M. J. (2015, December). Security and privacy framework for ubiquitous healthcare IoT devices. In 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST) (pp. 70–75). New York: IEEE.

    Google Scholar 

  40. Bhargavan, K., & Leurent, G. (2016, October). On the practical (in-) security of 64-bit block ciphers: Collision attacks on HTTP over TLS and OpenVPN. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (pp. 456–467). ACM.

    Google Scholar 

  41. Elhoseny, M., Shankar, K., Lakshmanaprabu, S. K., Maseleno, A., & Arunkumar, N. (2018). Hybrid optimization with cryptography encryption for medical image security in Internet of Things. Neural Computing and Applications, 1–15.

    Google Scholar 

  42. Elhoseny, M., Ramírez-González, G., Abu-Elnasr, O. M., Shawkat, S. A., Arunkumar, N., & Farouk, A. (2018). Secure medical data transmission model for IoT-based healthcare systems. IEEE Access, 6, 20596–20608.

    Article  Google Scholar 

  43. Vahdati, Z., Yasin, S. M., Ghasempour, A., & Salehi, M. (2019). Comparison of ECC and RSA algorithms in IoT devices. Journal of Theoretical and Applied Information Technology, 97(16).

    Google Scholar 

  44. Luo, E., Bhuiyan, M. Z. A., Wang, G., Rahman, M. A., Wu, J., & Atiquzzaman, M. (2018). Privacyprotector: Privacy-protected patient data collection in IoT-based healthcare systems. IEEE Communications Magazine, 56(2), 163–168.

    Article  Google Scholar 

  45. Rane, D. D. (2016). Superiority of Twofish over Blowfish. International Journal of Scientific Research and Management, 4(11).

    Google Scholar 

  46. Vijitha, S., & Bhavani, S. (2017). WNTFLEP-worm node detection with two fish algorithm based secure routing and link expiry prediction. International Journal of Pure and Applied Mathematics, 114(7), 675–685.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chatterjee, J., Das, M.K., Ghosh, S., Das, A., Bag, R. (2021). A Review on Security and Privacy Concern in IoT Health Care. In: Chakraborty, C., Banerjee, A., Kolekar, M., Garg, L., Chakraborty, B. (eds) Internet of Things for Healthcare Technologies. Studies in Big Data, vol 73. Springer, Singapore. https://doi.org/10.1007/978-981-15-4112-4_12

Download citation

Publish with us

Policies and ethics