Skip to main content

Microbes in Crop Production: Formulation and Application

  • Chapter
  • First Online:

Abstract

Agriculture depends upon expensive inputs of pesticides and chemical fertilizers to increase crop yields. This dependence on agrochemicals poses risks to human and environmental health such as disruption of nutrient cycling and demolition of beneficial microbial communities for higher crop production. Over the last decade, soil microbes have been widely exploited to enhance the crop production and plant and soil health management. The higher crop yields are reported after inoculation with plant growth-promoting microbes (PGPM). The PGPM signify as an effective and promising way to improve quality food production without environmental or human health hazard. This chapter will explore the current research and trends in microbial exploitation in growth promotion of different agricultural crops. We further discuss the key mechanisms underlying growth promotion and technological advances in bioformulation development to increase shelf life. Recent uses, development, and application of microbial formulation for managing a sustainable environmental system are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdallah DB, Frikha-Gargouri O, Tounsi S (2018) Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a. Biol Control 124:61–67

    Article  Google Scholar 

  • Ahkami AH, White RA III, Handakumbura PP (2017) Rhizosphere engineering: enhancing sustainable plant ecosystem productivity. Rhizosphere 3:233–243

    Article  Google Scholar 

  • Ahmad M, Pataczek L, Hilger TH (2018) Perspectives of microbial inoculation for sustainable development and environmental management. Front Microbiol 9:2992

    Article  PubMed  PubMed Central  Google Scholar 

  • Ansari FA, Ahmad I (2018) Plant growth promoting attributes and alleviation of salinity stress to wheat by biofilm forming Brevibacterium sp. FAB3 isolated from rhizospheric soil. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2018.08.003

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681

    Article  CAS  PubMed  Google Scholar 

  • Barea JM (2015) Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. J Soil Sci Plant Nutr 15(2):261–282

    CAS  Google Scholar 

  • Barnawal D, Bharti N, Pandey SS et al (2017) Plant growth promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161(4):502–514

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378(1–2):1–33

    Article  CAS  Google Scholar 

  • Bhogal A, Nicholson F, Rollett A et al (2018) Improvements in the quality of agricultural soils following organic material additions depend on both the quantity and quality of the materials applied. Front Sustain Food Syst 2:9

    Article  Google Scholar 

  • Bolandnazar S, Sharghi A, Badhi HN et al (2018) The impact of Sinorhizobium meliloti and Pseudomonas fluorescens on growth, seed yield and biochemical product of fenugreek under water deficit stress. Adv Hortic Sci 32(1):19–26

    Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S et al (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Cardinale M, Ratering S, Suarez C et al (2015) Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiol Res 181:22–32

    Article  CAS  PubMed  Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8(2):e55731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng W, Gershenson A (2007) Carbon fluxes in the rhizosphere. In: The rhizosphere. Academic, San Diego, pp 31–56

    Chapter  Google Scholar 

  • Chinnaswamy A, Coba de la Peña T, Stoll A et al (2018) A nodule endophytic Bacillus megaterium strain isolated from Medicago polymorpha enhances growth, promotes nodulation by Ensifer medicae and alleviates salt stress in alfalfa plants. Ann Appl Biol 172(3):295–308

    Article  CAS  Google Scholar 

  • Clemente JM, Cardoso CR, Vieira BSE et al (2016) Use of Bacillus spp. as growth promoter in carrot crop. Afr J Agric Res 11(35):3355–3359

    Article  Google Scholar 

  • Corral-Lugo A, Daddaoua A, Ortega A (2016) Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Sci Signal 9(409):ra1-ra1

    Article  CAS  Google Scholar 

  • Dessaux Y, Grandclément C, Faure D (2016) Engineering the rhizosphere. Trends Plant Sci 21(3):266–278

    Article  CAS  PubMed  Google Scholar 

  • Dinesh R, Anandaraj M, Kumar A et al (2015) Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol Res 173:34–43

    Article  PubMed  Google Scholar 

  • Egamberdieva D, Davranov K, Wirth S et al (2017) Impact of soil salinity on the plant-growth–promoting and biological control abilities of root associated bacteria. Saudi J Biol Sci 24(7):1601–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elekhtyar NM (2015) Efficiency of Pseudomonas fluorescence as plant growth-promoting rhizobacteria (PGPR) for the enhancement of seedling vigor, nitrogen uptake. Int J Sci Res Agric Sci 2:57–67

    Google Scholar 

  • García JE, Maroniche G, Creus C et al (2017) In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiol Res 202:21–29

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (2018) Soil microbes and sustainable agriculture. Pedosphere 28(2):167–169

    Article  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R et al (2016) Formulations of plant growth-promoting microbes for field applications. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 239–251

    Chapter  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Samineni S (2017) Nitrogen fixation, plant growth and yield enhancements by diazotrophic growth-promoting bacteria in two cultivars of chickpea (Cicer arietinum L.). Biocatal Agric Biotechnol 11:116–123

    Article  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Vemula A et al (2018) Influence of diazotrophic bacteria on nodulation, nitrogen fixation, growth promotion and yield traits in five cultivars of chickpea. Biocatal Agric Biotechnol 15:35–42

    Article  Google Scholar 

  • Goswami D, Dhandhukia P, Patel P et al (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169(1):66–75

    Article  CAS  PubMed  Google Scholar 

  • Gowtham HG, Murali M, Singh SB et al (2018) Plant growth promoting rhizobacteria Bacillus amyloliquefaciens improves plant growth and induces resistance in chilli against anthracnose disease. Biol Control 126:209–217

    Article  CAS  Google Scholar 

  • Haldar S, Sengupta S (2015) Plant-microbe cross-talk in the rhizosphere: insight and biotechnological potential. Open Microbiol J 9:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havlicek E, Mitchell EA (2014) Soils supporting biodiversity. In: Interactions in soil: promoting plant growth. Springer, Dordrecht, pp 27–58

    Chapter  Google Scholar 

  • Holečková Z, Kulhánek M, Hakl J et al (2018) Use of active microorganisms of the Pseudomonas genus during cultivation of maize in field conditions. Plant Soil Environ 64(1):26–31

    Article  Google Scholar 

  • Hossain MM, Sultana F, Islam S (2017) Plant growth-promoting fungi (PGPF): phytostimulation and induced systemic resistance. In: Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 135–191

    Google Scholar 

  • Jiang CH, Liao MJ, Wang HK et al (2018) Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biol Control 126:147–157

    Article  Google Scholar 

  • Kang SM, Radhakrishnan R, Khan AL et al (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Khan AL, Waqas M et al (2015) Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsicum annuum L. Eur J Soil Biol 68:85–93

    Article  CAS  Google Scholar 

  • Karthik C, Oves M, Thangabalu R et al (2016) Cellulosimicrobium funkei-like enhances the growth of Phaseolus vulgaris by modulating oxidative damage under Chromium (VI) toxicity. J Adv Res 7(6):839–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasim WA, Gaafar RM, Abou-Ali RM et al (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61(2):217–227

    Article  Google Scholar 

  • Khan AL, Waqas M, Asaf S et al (2017) Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environ Exp Bot 133:58–69

    Article  CAS  Google Scholar 

  • Khosravi A, Zarei M, Ronaghi A (2018) Effect of PGPR, Phosphate sources and vermicompost on growth and nutrients uptake by lettuce in a calcareous soil. J Plant Nutr 41(1):80–89

    Article  CAS  Google Scholar 

  • Konieczny A, Kowalska I (2016) The role of arbuscular mycorrhiza in zinc uptake by lettuce grown at two phosphorus levels in the substrate. Agric Food Sci 25(2):124–137

    Article  CAS  Google Scholar 

  • Kroll S, Agler MT, Kemen E (2017) Genomic dissection of host–microbe and microbe–microbe interactions for advanced plant breeding. Curr Opin Plant Biol 36:71–78

    Article  CAS  PubMed  Google Scholar 

  • Kumar KVK, Raju SK, Reddy MS et al (2009) Evaluation of commercially available PGPR for control of rice sheath blight caused by Rhizoctonia solani. J Pure Appl Microbiol 2:485–488

    Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R (2014) Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocatal Agric Biotechnol 3(4):121–128

    Article  Google Scholar 

  • Kumar P, Thakur S, Dhingra GK et al (2018) Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatal Agric Biotechnol 15:264–269

    Article  Google Scholar 

  • Kumari P, Meena M, Gupta P et al (2018) Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean (Vigna radiata (L.) R. Wilczek). Biocatal Agric Biotechnol 16:163–171

    Article  Google Scholar 

  • Laditi MA, Nwoke C, Jemo M et al (2012) Evaluation of microbial inoculants as biofertilizers for the improvement of growth and yield of soybean and maize crops in savanna soils. Afr J Agric Res 7(3):405–413

    Article  Google Scholar 

  • Latif Khan A, Ahmed Halo B, Elyassi A et al (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solarium lycopersicum. Electron J Biotechnol 19(3):58–64

    Article  Google Scholar 

  • Le CN, Hoang TK, Thai TH et al (2018) Isolation, characterization and comparative analysis of plant-associated bacteria for suppression of soil-borne diseases of field-grown groundnut in Vietnam. Biol Control 121:256–262

    Article  Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349(6250):860–864

    Article  CAS  PubMed  Google Scholar 

  • Levy A, Gonzalez IS, Mittelviefhaus M (2018) Genomic features of bacterial adaptation to plants. Nat Genet 50(1):138

    Article  CAS  Google Scholar 

  • Liu K, McInroy JA, Hu CH et al (2018a) Mixtures of plant-growth-promoting rhizobacteria enhance biological control of multiple plant diseases and plant-growth promotion in the presence of pathogens. Plant Dis 102(1):67–72

    Article  PubMed  Google Scholar 

  • Liu X, Jiang X, Zhao W et al (2018b) Colonization of phosphate-solubilizing Pseudomonas sp. strain P34-L in the wheat rhizosphere and its effects on wheat growth and the expression of phosphate transporter gene TaPT4 in wheat. BioRxiv. 294736

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    Article  CAS  PubMed  Google Scholar 

  • Mendis HC, Thomas VP, Schwientek P et al (2018) Strain-specific quantification of root colonization by plant growth promoting rhizobacteria Bacillus firmus I-1582 and Bacillus amyloliquefaciens QST713 in non-sterile soil and field conditions. PLoS One 13(2):e0193119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng Q, Jiang H, Hao JJ (2016) Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biol Control 98:18–26

    Article  CAS  Google Scholar 

  • Mishra J, Singh R, Arora NK (2017) Plant growth-promoting microbes: diverse roles in agriculture and environmental sustainability. In: Probiotics and plant health. Springer, Singapore, pp 71–111

    Chapter  Google Scholar 

  • Mukhtar S, Shahid I, Mehnaz S et al (2017) Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum L.). Microbiol Res 205:107–117

    Article  CAS  PubMed  Google Scholar 

  • Nakkeeran S, Fernando WD, Siddiqui ZA (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 257–296

    Google Scholar 

  • Pandey C, Bajpai VK, Negi YK et al (2018) Effect of plant growth promoting Bacillus spp. on nutritional properties of Amaranthus hypochondriacus grains. Saudi J Biol Sci 25(6):1066–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YS, Dutta S, Ann M et al (2015) Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochem Biophys Res Commun 461(2):361–365

    Article  CAS  PubMed  Google Scholar 

  • Raimi A, Adeleke R, Roopnarain A (2017) Soil fertility challenges and Biofertiliser as a viable alternative for increasing smallholder farmer crop productivity in sub-Saharan Africa. Cogent Food Agric 3(1):1400933

    Article  CAS  Google Scholar 

  • Rais A, Shakeel M, Malik K et al (2018) Antagonistic Bacillus spp. reduce blast incidence on rice and increase grain yield under field conditions. Microbiol Res 208:54–62

    Article  PubMed  Google Scholar 

  • Rodriguez A, Sanders IR (2015) The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J 9(5):1053

    Article  PubMed  Google Scholar 

  • Rojas-Solís D, Santoyo G (2018) Data on the effect of Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 culture supernatants on the mycelial growth of Botrytis cinerea. Data Brief 17:234–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy T, Bandopadhyay A, Sonawane PJ et al (2018) Bio-effective disease control and plant growth promotion in lentil by two pesticide degrading strains of Bacillus sp. Biol Control 127:55–63

    Article  Google Scholar 

  • Sahu PK, Brahmaprakash GP (2016) Formulations of biofertilizers–approaches and advances. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 179–198

    Chapter  Google Scholar 

  • Salloum MS, Menduni MF, Luna CM (2017) A differential capacity of arbuscular mycorrhizal fungal colonization under well-watered conditions and its relationship with drought stress mitigation in unimproved vs. improved soybean genotypes. Botany 96(2):135–144

    Article  CAS  Google Scholar 

  • Sapre S, Gontia-Mishra I, Tiwari S (2018) Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiol Res 206:25–32

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K et al (2018) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169(1):20–32

    Article  CAS  PubMed  Google Scholar 

  • Seenivasan N (2018) Effect of concomitant application of Pseudomonas fluorescens and Purpureocillium lilacinum in carrot fields infested with Meloidogyne hapla. Arch Phytopathol Plant Protect 51(1–2):30–40

    Article  Google Scholar 

  • Shahzad R, Waqas M, Khan AL et al (2016) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 106:236–243

    Article  CAS  PubMed  Google Scholar 

  • Shahzad R, Khan AL, Bilal S et al (2017) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot 136:68–77

    Article  CAS  Google Scholar 

  • Sharma IP, Chandra S, Kumar N (2017a) PGPR: heart of soil and their role in soil fertility. In: Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 51–67

    Chapter  Google Scholar 

  • Sharma P, Verma PP, Kaur M (2017b) Comparative effect of Pseudomonas aeruginosa, Pseudomonas fluorescens and Pseudomonas putida on the growth of replanted apple. J Pure Appl Microbiol 11(2):1141–1148

    Article  CAS  Google Scholar 

  • Shelake RM, Waghunde RR, Morita EH et al (2018) Plant-microbe-metal interactions: basics, recent advances, and future trends. In: Plant microbiome: stress response. Springer, Singapore, pp 283–305

    Chapter  Google Scholar 

  • Shelake RM, Waghunde RR, Verma et al (2019) Carbon sequestration for soil fertility management: microbiological perspective. In: Soil fertility management for sustainable development. Springer, Singapore, pp 25–42

    Chapter  Google Scholar 

  • Silambarasan S, Vangnai AS (2017) Plant-growth promoting Candida sp. AVGB4 with capability of 4-nitroaniline biodegradation under drought stress. Ecotoxicol Environ Saf 139:472–480

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Trivedi P (2017) Microbiome and the future for food and nutrient security. Microb Biotechnol 10(1):50–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Sipahutar MK, Vangnai AS (2017) Role of plant growth-promoting Ochrobactrum sp. MC22 on triclocarban degradation and toxicity mitigation to legume plants. J Hazard Mater 329:38–48

    Article  CAS  PubMed  Google Scholar 

  • Sipahutar MK, Piapukiew J, Vangnai AS (2018) Efficiency of the formulated plant-growth promoting Pseudomonas fluorescens MC46 inoculant on triclocarban treatment in soil and its effect on Vigna radiata growth and soil enzyme activities. J Hazard Mater 344:883–892

    Article  CAS  PubMed  Google Scholar 

  • Stanojković-Sebić A, Pivić R, Dinić Z et al (2018) Effect of indigenous Pseudomonas sp. and Bacillus sp. strains on yield and main chemical growth parameters of Radicchio. Contemporary Agric 67(1):20–26

    Article  Google Scholar 

  • Timmusk S, Behers L, Muthoni J (2017) Perspectives and challenges of microbial application for crop improvement. Front Plant Sci 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res Int. https://doi.org/10.1155/2013/863240

  • Trinh CS, Lee H, Lee WJ et al (2018) Evaluation of the plant growth-promoting activity of Pseudomonas nitroreducens in Arabidopsis thaliana and Lactuca sativa. Plant Cell Rep 37(6):873–885

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, Schenk PM, Wallenstein MD et al (2017) Tiny microbes, big yields: enhancing food crop production with biological solutions. Microb Biotechnol 10(5):999–1003

    Article  PubMed  PubMed Central  Google Scholar 

  • Valetti L, Iriarte L, Fabra A (2018) Growth promotion of rapeseed (Brassica napus) associated with the inoculation of phosphate solubilizing bacteria. Appl Soil Ecol 132:1–10

    Article  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M (2015) The importance of the microbiome of the plant holobiont. New Phytol 206(4):1196–1206

    Article  PubMed  Google Scholar 

  • Venturi V, Keel C (2016) Signaling in the rhizosphere. Trends Plant Sci 21(3):187–198

    Article  CAS  PubMed  Google Scholar 

  • Verbon EH, Liberman LM (2016) Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci 21(3):218–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma PP, Thakur S, Kaur M (2016) Antagonism of Pseudomonas putida against Dematophora necatrix a major apple plant pathogen and its potential use as a biostimulant. J Pure Appl Microbiol 10(4):2717–2727

    Article  CAS  Google Scholar 

  • Vijayabharathi R, Gopalakrishnan S, Sathya A et al (2018) Deciphering the tri-dimensional effect of endophytic Streptomyces sp. on chickpea for plant growth promotion, helper effect with Mesorhizobium ciceri and host-plant resistance induction against Botrytis cinerea. Microb Pathog 122:98–107

    Article  CAS  PubMed  Google Scholar 

  • Vives-Peris V, Gómez-Cadenas, Pérez-Clemente RM (2018) Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp. Plant Cell Rep 37(11):1557–1569

    Article  CAS  PubMed  Google Scholar 

  • Wallenstein MD (2017) Managing and manipulating the rhizosphere microbiome for plant health: a systems approach. Rhizosphere 3:230–232

    Article  Google Scholar 

  • Wang B, Adachi Y, Sugiyama S (2018) Soil productivity and structure of bacterial and fungal communities in unfertilized arable soil. PLoS One 13(9):e0204085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weidner S, Latz E, Agaras B (2017) Protozoa stimulate the plant beneficial activity of rhizospheric pseudomonads. Plant Soil 410(1–2):509–515

    Article  CAS  Google Scholar 

  • Xiang N, Lawrence KS, Donald PA (2018) Biological control potential of plant growth-promoting rhizobacteria suppression of Meloidogyne incognita on cotton and Heterodera glycines on soybean: a review. J Phytopathol 166:449–458

    Article  Google Scholar 

  • Zayed MS (2016) Advances in formulation development technologies. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 219–237

    Chapter  Google Scholar 

  • Zhang X, Huang Y, Harvey PR (2012) Enhancing plant disease suppression by Burkholderia vietnamiensis through chromosomal integration of Bacillus subtilis chitinase gene chi113. Biotechnol Lett 34(2):287–293

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge financial support from the National Research Foundation of Korea, Republic of Korea (Grant #2017R1A4A1015515).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, P.P., Shelake, R.M., Sharma, P., Kim, JY., Das, S., Kaur, M. (2020). Microbes in Crop Production: Formulation and Application. In: Sharma, S., Sharma, N., Sharma, M. (eds) Microbial Diversity, Interventions and Scope. Springer, Singapore. https://doi.org/10.1007/978-981-15-4099-8_3

Download citation

Publish with us

Policies and ethics