Skip to main content

Microbial Clean-Up Strategy for Eating Garbage

  • Chapter
  • First Online:
Microbial Diversity, Interventions and Scope

Abstract

Bioremediation is the deliberate use of biological mechanisms to clean up pollutants, viz. hydrocarbons, oil, heavy metal, pesticides and dyes, by letting the microbes eat and digest toxic contaminants and consequently transform them into gases, water and other less toxic components. The indispensable habit of using products made out of plastic has led to the pollution havoc in the present day. The physical and chemical degradation methods do not provide an eco-friendly solution to disposal of garbage. Here, the usage of microorganisms has emerged as a key alternative offering solution to the challenges of reifying environment-friendly garbage clean-up. The resiliency of microorganisms to survive even the harshest of environmental conditions and the extreme diversity in microbial communities which comprise as many as 10,000 distinct microbial species per gram of soil make them highly effective in bioremediation of almost all environmental pollutants. As such, bioremediation is a highly promising solution for the degradation, eradication, immobilization and detoxification of chemical and physical waste materials. In addition, the process is also cheaper in equipment and labour costs in comparison to the physical and chemical treatment solutions. So bioremediation has a great contributory role to play in solving many existing and future environmental problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams GO, Fufeyin PT, Okoro SE (2015) Bioremediation, biostimulation and bioaugmentation: a review. Int J Environ Bioremed Biodegrad 3(1):28–39

    CAS  Google Scholar 

  • Akhtar N, Iqbal M, Iqbal ZS, Iqbal J (2008) Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(III). J Environ Sci 20:231–239

    CAS  Google Scholar 

  • Barr D (2002) Biological methods for assessment and remediation of contaminated land: case studies. Construction Industry Research and Information Association, London

    Google Scholar 

  • Bhattacharya M, Guchhait S, Biswas D, Datta S (2015) Waste lubricating oil removal in a batch reactor by mixed bacterial consortium: a kinetic study. Bioprocess Biosyst Eng 38:2095–2106

    CAS  PubMed  Google Scholar 

  • Bollag JM, Bollag WB (1995) Soil contamination and the feasibility of biological remediation. In: Skipper HD, Turco RF (eds) Bioremediation: science and applications: Soil Science Society of America. American Society of Agronomy, and Crop Science Society of America, Madison, p 1

    Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    CAS  Google Scholar 

  • Cases I, De Lorenzo V (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8:213–222

    CAS  PubMed  Google Scholar 

  • Chen X, Liu M, Hu F, Mao X, Li H (2007) Contributions of soil micro-fauna (protozoa and nematodes) to rhizosphere ecological functions. Acta Ecol Sin 27(8):3132–3143

    CAS  Google Scholar 

  • Coulon F, Al Awadi M, Cowie W, Mardlin D, Pollard S, Cunningham C, Risdon G, Arthur P, Semple KT, Paton GI (2010) When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial. Environ Pollut 158:3032–3040

    CAS  PubMed  Google Scholar 

  • Couto N, Fritt-Rasmussen J, Jensen PE (2014) Suitability of oil bioremediation in an Artic soil using surplus heating from an incineration facility. Environ Sci Pollut Res 21(9):6221–6227

    CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int:1–13

    Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption brown algae. Water Res 37:4311–4330

    CAS  PubMed  Google Scholar 

  • Dias RL, Ruberto L, Calabró A, Balbo AL, Del Panno MT, Mac Cormack WP (2015) Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biol 38: 677–687

    Google Scholar 

  • Dwivedi S (2012) Bioremediation of heavy metal by algae: current and future perspective. J Adv Lab Res Biol 3(3)

    Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    PubMed  Google Scholar 

  • Enim AE (2013) Factors that determine bioremediation of organic compounds in the soil. Acad J Interdiscipl Stud 2(13):125–128

    Google Scholar 

  • Floodgate G (1984) The fate of petroleum in marine ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 355–398

    Google Scholar 

  • Folch A, Vilaplana M, Amado L, Vicent R, Caminal G (2013) Fungal permeable reactive barrier to remediate groundwater in an artificial aquifer. J Hazard Mater 262:554–560

    CAS  PubMed  Google Scholar 

  • Frascari D, Zanaroli G, Danko AS (2015) In situ aerobic cometabolism of chlorinated solvents: a review. J Hazard Mater 283:382–399

    CAS  PubMed  Google Scholar 

  • Fritsche W, Hofrichter M (2005) Aerobic degradation of recalcitrant organic compounds by microorganisms. In: Jördening H-J, Winter J (eds) Environmental biotechnology: concepts and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/3527604286.ch7

  • Fritsche W, Hofrichter M (2008) Aerobic degradation by microorganisms. In: Rehm H-J, Reed G (eds) Biotechnology set, 2nd edn. Wiley-VCH VerlagGmbH, Weinheim. https://doi.org/10.1002/9783527620999.ch6m

    Chapter  Google Scholar 

  • Gidarakos E, Aivalioti M (2007) Large scale and long term application of bioslurping: the case of a Greek petroleum refinery site. J Hazard Mater 149:574–581

    CAS  PubMed  Google Scholar 

  • Gomez F, Sartaj M (2014) Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). Int Biodeterior Biodegradation 89:103–109

    CAS  Google Scholar 

  • Grishchenkov VG, Townsend RT, McDonald TJ, Autenrieth RL, Bonner JS, Boronin AM (2000) Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions. Process Biochem 35(9):889–896

    CAS  Google Scholar 

  • Hobson AM, Frederickson J, Dise NB (2005) CH4 and N2O from mechanically turned windrow and vermin composting systems following in-vessel pre-treatment. Waste Manag 25:345–352

    CAS  PubMed  Google Scholar 

  • Hohener P, Ponsin V (2014) In situ vadose zone bioremediation. Curr Opin Biotechnol 27:1–7

    CAS  PubMed  Google Scholar 

  • Jain PK, Bajpai V (2012) Biotechnology of bioremediation – a review. Int J Environ Sci 3(1):535–549

    CAS  Google Scholar 

  • Kafilzadeh F, Sahragard P, Jamali H, Tahery Y (2011) Isolation and identification of hydrocarbons degrading bacteria in soil around Shiraz Refinery. Afr J Microbiol Res 4(19):3084–3089

    Google Scholar 

  • Kanade SN, Ade AB, Khilare VC (2012) Malathion degradation by Azospirillum lipoferum Beijerinck. Sci Res Rep 2(1):94–103

    Google Scholar 

  • Kang JW (2014) Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 36(6):1129–1139

    CAS  PubMed  Google Scholar 

  • Khan AG (2006) Mycorrhizoremediation an enhanced form of phytoremediation. J Zhejiang Univ (Sci) 7(7):503–514

    Google Scholar 

  • Kim S, Krajmalnik-Brown R, Kim J-O, Chung J (2014) Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. Sci Total Environ 497:250–259

    PubMed  Google Scholar 

  • Kumar A, Bisht BS, Joshi VD (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1(6):1079–1093

    Google Scholar 

  • Macaulay BM (2015) Understanding the behavior of oil-degrading micro-organisms to enhance the microbial remediation of spilled petroleum. Appl Ecol Environ Res 13(1):247–262

    Google Scholar 

  • Madhavi GN, Mohini DD (2012) Review paper on – parameters affecting bioremediation. Int J Life Sci Pharma Res 2(3):77–80

    Google Scholar 

  • Matavuly MN, Molitoris HP (2009) Marine fungi degraders of poly-3-hydroxyalkanoate based plastic materials. Proc Nat Sci Publ Matica Srpska 116:253–265

    CAS  Google Scholar 

  • McKinney RE (1957) Activity of microorganisms in organic waste disposal. Appl Microbiol 5:00311–00033

    Google Scholar 

  • Mrozik A, Piotrowska-Seget Z, Labuzek S (2003) Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons. Pol J Environ Stud 12(1):15–25

    CAS  Google Scholar 

  • Nikolopoulou M, Pasadakis N, Norf H, Kalogerakis N (2013) Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids. Mar Pollut Bull 77:37–44

    CAS  PubMed  Google Scholar 

  • Paudyn K, Rutter A, Rowe RK, Poland JS (2008) Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg Sci Technol 53:102–114

    Google Scholar 

  • Pena-Castro JM, Martínez-Jeronimo F, Esparza-Garcia F, Canizares-Villanueva RO (2004) Heavy metals removal by the microalga Scenedesmus incrassatulus in continuous cultures. Bioresour Technol 94:219–222

    CAS  PubMed  Google Scholar 

  • Petric I, Hrak D, Fingler S, Vonina E, Cetkovic H, Kolar BA, UdikoviKoli N (2007) Enrichment and characterization of PCB-degrading bacteria as potential seed cultures for bioremediation of contaminated soil. Food Technol Biotechnol 45(1):11–20

    CAS  Google Scholar 

  • Philp JC, Atlas RM (2005) Bioremediation of contaminated soils and aquifers. In: Atlas RM, Philp JC (eds) Bioremediation: applied microbial solutions for real-world environmental cleanup. American Society for Microbiology (ASM) Press, Washington, DC, pp 139–236

    Google Scholar 

  • Phulia V, Jamwal A, Saxena N (2013) Technologies in aquatic bioremediation. In: Kumar P, Zaki BMSA, Chauhan A (eds) Freshwater ecosystem and xenobiotics. Discovery Publishing House PVT. Ltd., New Delhi, pp 65–91

    Google Scholar 

  • Rathore AK (2017) Bioremediation: current research and application. IK International Publisher, New Delhi. ISBN:978-93-85909-60-3

    Google Scholar 

  • Seeger M, Camara B, Hofer B (2001) Dehalogenation, denitration, dehydroxylation, and angular attack on substituted biphenyls and related compounds by a biphenyl dioxygenase. J Bacteriol 183:3548–3555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma PD (2011–12) Ecology and environment, 11th edn. Rastogi Publications, Meerut, pp 346–374

    Google Scholar 

  • Silva-Castro GA, Uad I, Gónzalez-López J, Fandiño CG, Toledo FL, Calvo C (2012) Application of selected microbial consortia combined with inorganic and oleophilic fertilizers to recuperate oil-polluted soil using land farming technology. Clean Techn Environ Policy 14:719–726

    CAS  Google Scholar 

  • Silva-Castro GA, Uad I, Rodríguez-Calvo A, Gónzalez-López J, Calvo C (2015) Response of autochthonous microbiota of diesel polluted soils to land-farming treatments. Environ Res 137:49–58

    CAS  PubMed  Google Scholar 

  • Struthers JK, Jayachandran K, Moorman TB (1998) Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil. Appl Environ Microbiol 64:3368–3375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Surekha Rani M, Lakshmi V, Suvarnalatha Devi KP, Jaya Madhuri R, Aruna S, Jyothi K, Narasimha G, Venkateswarlu K (2008) Isolation and characterization of a chlorpyrifos degrading bacterium from agricultural soil and its growth response. Afr J Microbiol Res 2:026–031

    Google Scholar 

  • Taguchi K, Motoyama M, Kudo T (2001) PCB/biphenyl degradation gene cluster in Rhodococcus rhodochrousK37, is different from the well-known bph gene clusters in Rhodococcus sp. P6, RHA1, and TA42. RIKEN review. 42. Focused on ecomolecular science research

    Google Scholar 

  • Vandevivere PC, Bianchi R, Verstraete W (1998) Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J Chem Technol Biotechnol 72:289–302

    CAS  Google Scholar 

  • Vidali M (2001) Bioremediation – an overview. Pure Appl Chem 73(7):1163–1172

    CAS  Google Scholar 

  • Volpe A, D’Arpa S, Del Moro G, Rossetti S, Tandoi V, Uricchio VF (2012) Fingerprinting hydrocarbons in a contaminated soil from an Italian natural reserve and assessment of the performance of a low-impact bioremediation approach. Water Air Soil Pollut 223:1773–1782

    CAS  Google Scholar 

  • Wang Q, Zhang S, Li Y (2011) Potential approaches to improving biodegradation of hydrocarbons for bioremediation of crude oil pollution. Environ Prot J 2:47–55

    CAS  Google Scholar 

  • Wang X, Wang Q, Wang S, Li F, Guo G (2012) Effect of biostimulation on community level physiological profiles of microorganisms in field-scale biopiles composed of aged oil sludge. Bioresour Technol 111:308–315

    CAS  PubMed  Google Scholar 

  • Whelan MJ, Coulon F, Hince G, Rayner J, McWatters R, Spedding T, Snape I (2015) Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere 131:232–240

    CAS  PubMed  Google Scholar 

  • Wiedemeier TH, Miller RN, Wilson JT (1995) Significance of anaerobic processes for the intrinsic bioremediation of fuel hydrocarbons. In: Proceedings of the petroleum hydrocarbons and organic chemicals in groundwater – prevention, detection, and remediation conference, November 29–December 1, 1995, Houston, TX

    Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18(3):257–266

    CAS  PubMed  Google Scholar 

  • Yang SZ, Jin HJ, Wei Z (2009) Bioremediation of oil spills in cold environments: a review. Pedosphere 19(3):371–381

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rana, S., Sharma, A., Rana, R.S. (2020). Microbial Clean-Up Strategy for Eating Garbage. In: Sharma, S., Sharma, N., Sharma, M. (eds) Microbial Diversity, Interventions and Scope. Springer, Singapore. https://doi.org/10.1007/978-981-15-4099-8_14

Download citation

Publish with us

Policies and ethics