Skip to main content

Plant-Parasitic Nematodes and Their Biocontrol Agents: Current Status and Future Vistas

  • Chapter
  • First Online:
Management of Phytonematodes: Recent Advances and Future Challenges

Abstract

Plant-parasitic nematodes (PPNs) pose so considerable threats to growing crops in size and quality that the figures reflecting averages of worldwide crop losses annually are staggering. Biological control agents (BCAs) rank high among other PPN management options, given mounting care to lessen application of chemical nematicides with a clear aim at the avoidance of human health hazards and attaining pollution-free environment. Nevertheless, BCAs are frequently slower acting, less effective, and more inconsistent than control normally achieved with chemicals. Therefore, the different groups of BCAs were reviewed herein to identify conditions and practices that affected their use for nematode management and alternatives to maximize their useful applications against PPNs. Various approaches to minimize costs, facilitate availability, optimize application, and enhance efficacy of these BCAs have been discussed. Researchers should further grasp the complex network of interactions among biotic and abiotic factors in intimate contact with these BCAs to maximize their gains via safe and skillful application and advanced technology. Integrated pest management programs in ways that make BCAs complementary or superior to chemical nematicides are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elgawad MMM (2014) Plant-parasitic nematode threats to global food security. J Nematol 46:130

    Google Scholar 

  • Abd-Elgawad MMM (2016a) Comments on the use of biocontrol agents against plant-parasitic nematodes. Int J PharmTech Res 9(12):352–359

    Google Scholar 

  • Abd-Elgawad MMM (2016b) Biological control agents of plant-parasitic nematodes: a review. Egypt J Biol Pest Control 26(2):423–429

    Google Scholar 

  • Abd-Elgawad MMM (2016c) Use of Taylor’s power law parameters in nematode sampling. Int J PharmTech Res 9(12):999–1004

    Google Scholar 

  • Abd-Elgawad MMM (2017) Status of entomopathogenic nematodes in integrated pest management strategies in Egypt. In: Abd-Elgawad MMM, Askary TH, Coupland J (eds) Biocontrol agents: Entomopathogenic and slug parasitic nematodes. CAB International, Wallingford, pp 473–501

    Google Scholar 

  • Abd-Elgawad MMM (2020) Can rational sampling maximise isolation and fix distribution measure of entomopathogenic nematodes? Nematology 22. https://doi.org/10.1163/15685411-00003350

  • Abd-Elgawad MMM, Askary TH (2015) Impact of phytonematodes on agriculture economy. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CAB International, Wallingford, pp 3–49

    Google Scholar 

  • Abd-Elgawad MMM, Askary TH (2018) Fungal and bacterial nematicides in integrated nematode management strategies. Egypt J Biol Pest Control 28:74. https://doi.org/10.1186/s41938-018-0080-x

    Article  Google Scholar 

  • Abd-Elgawad MMM, Kabeil SSA (2012) Biological control of Meloidogyne incognita by Trichoderma harzianum and Serratia marcescens and their related enzymatic changes in tomato roots. Afr J Biotechnol 11:16,247–16,252

    CAS  Google Scholar 

  • Abd-Elgawad MMM, Vagelas IK (2015) Nematophagous bacteria: field application and commercialization. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CAB International, Wallingford, pp 276–309

    Google Scholar 

  • Abd-Elgawad MMM, Koura FFH, Montasser SA, Hammam MMA (2016) Distribution and losses of Tylenchulus semipenetrans in citrus orchards on reclaimed land in Egypt. Nematology 18:1141–1150

    Google Scholar 

  • Abd-El-Khair H, El-Nagdi WMA, Youssef MA, Abd-Elgawad MMM, Dawood MG (2019) Protective effect of Bacillus subtilis, B. pumilus, and Pseudomonas fluorescens isolates against root knot nematode Meloidogyne incognita on cowpea. Bull Natl Res Centre 43:64. https://doi.org/10.1186/s42269-019-0108-8

    Article  Google Scholar 

  • Adam M, Westphal A, Hallmann J, Heuer H (2014) Specific microbial attachment to root knot nematodes in suppressive soil. Appl Environ Microbiol 80:2679–2686. https://doi.org/10.1128/AEM.03905-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansari RA, Khan TA (2012a) Parasitic association of root-knot nematode, Meloidogyne incognita on guava. e-J Sci Technol 5:65–67

    Google Scholar 

  • Ansari RA, Khan TA (2012b) Diversity and community structure of phytonematodes associated with guava in and around Aligarh, Uttar Pradesh, India. Trends Biosci 5(3):202–204

    Google Scholar 

  • Ansari RA, Mahmood I (2017a) Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Sci Hortic 226:1–9

    CAS  Google Scholar 

  • Ansari RA, Mahmood I (2017b) Determination of disease incidence caused by Meloidogyne spp. and or Fusarium udum on pigeonpea in Aligarh district: a survey. Trends Biosci 10(24):5239–5243

    Google Scholar 

  • Ansari RA, Mahmood I (2019a) Plant health under biotic stress: volume 2: microbial interactions. Springer, Singapore. https://doi.org/10.1007/978-981-13-6040-4

    Book  Google Scholar 

  • Ansari RA, Mahmood I (2019b) Plant health under biotic stress: volume 1: organic strategies. Springer, Singapore. https://doi.org/10.1007/978-981-13-6043-5

    Book  Google Scholar 

  • Ansari RA, Rizvi R, Sumbul A, Mahmood I (2017a) PGPR: current vogue in sustainable crop production. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 455–472

    Google Scholar 

  • Ansari RA, Mahmood I, Rizvi R, Sumbul A (2017b) Siderophores: augmentation of soil health and crop productivity. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics in agroecosystem. Springer, Singapore, pp 291–312

    Google Scholar 

  • Ansari RA, Sumbul A, Rizvi R, Mahmood I (2019) Organic soil amendments: potential tool for soil and plant health management. In: Ansari RA, Mahmood I (eds) Plant health under biotic stress. Springer, Singapore, pp 1–35

    Google Scholar 

  • Arora NK, Mishra J (2016) Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Appl Soil Ecol 107:405–407

    Google Scholar 

  • Askary TH (2015) Nematophagous fungi as biocontrol agents of phytonematodes. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CAB International, Wallingford, pp 81–125

    Google Scholar 

  • Askary TH, Martinelli PRP (eds) (2015) Biocontrol agents of phytonematodes. CAB International, Wallingford; 470 pp

    Google Scholar 

  • Atkins SD, Hidalgo-Diaz L, Kalisz H, Mauchline TH, Hirsch PR, Kerry BR (2003) Development of a new management strategy for the control of root-knot nematodes (Meloidogyne spp.) in organic vegetable production. Pest Manag Sci 59:183–189

    CAS  PubMed  Google Scholar 

  • Barratt BIP, Moran VC, Bigler F, van Lenteren JC (2018) The status of biological control and recommendations for improving uptake for the future. BioControl 63:11–26

    Google Scholar 

  • Bharali A, Bhagawati B, Uday K (2019) Bio-efficacy of native bioagents and biofertilizers for the management of root-knot nematode Meloidogyne incognita infecting black gram Vigna mungo. Int J Curr Microbiol App Sci 8(2):1484–1501

    CAS  Google Scholar 

  • Bilgrami AL (2008) Biological control potentials of predatory nematodes. In: Ciancio A, Mukergi KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes. Springer, New York, pp 3–28

    Google Scholar 

  • Blacket MJ, Agarwal A, Wainer J, Triska MD, Renton M, Edwards J (2019) Molecular assessment of the introduction and spread of potato cyst nematode, Globodera rostochiensis, in Victoria, Australia. Phytopathology 109(4):659–669

    PubMed  Google Scholar 

  • Blyuss KB, Fatehi F, Tsygankova VA, Biliavska LO, Iutynska GO, Yemets AI, Blume YB (2019) RNAi-based biocontrol of wheat nematodes using natural poly-component biostimulants. Front Plant Sci 2019:10. https://doi.org/10.3389/fpls.2019.00483

    Article  Google Scholar 

  • van Bruggen AHC, Finckh MR (2016) Management approaches in organic farming systems. Annu Rev Phytopathol 54:25–54

    PubMed  Google Scholar 

  • Btryon (2019). Advantages & disadvantages of biological control. https://owlcation.com/stem/Advantages-Disadvantages-of-Biological-Control. Accessed 26 April 2019

  • Cabanillas E, Barker KR, Daykin ME (1988) Histology of the interaction of Paecilomyces lilacinus with Meloidogyne incognita on tomato. J Nematol 20:362–365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron DD, Neal AI, van Wees SCM, Ton J (2013) Mycorhiza induced resistance: more than the sum of its parts. Trends Plant Sci 18:539–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campos-Herrera R, Stuart RJ, Pathak E, El-Borai FE, Duncan LW (2019) Temporal patterns of entomopathogenic nematodes in Florida citrus orchards: evidence of natural regulation by microorganisms and nematode competitors. Soil Biol Biochem 128:193–204

    CAS  Google Scholar 

  • Cetintas R, Kusek M, Fateh SA (2018) Effect of some plant growth-promoting rhizobacteria strains on root-knot nematode, Meloidogyne incognita, on tomatoes. Egypt J Biol Pest Control 28:7. https://doi.org/10.1186/s41938-017-0008-x

    Article  Google Scholar 

  • Chen S (2007) Suppression of Heterodera glycines in soils from fields with long-term soybean monoculture. Biocontrol Sci Tech 17:125–134

    Google Scholar 

  • Chen ZX, Dickson DM (1998) Review of Pasteuria penetrans: biology, ecology, and biological control potential. J Nematol 30:313–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crow WT (2014) Effects of a commercial formulation of Bacillus firmus I-1582 on golf course bermudagrass infested with Belonolaimus longicaudatus. J Nematol 46(4):331–335

    PubMed  PubMed Central  Google Scholar 

  • Davies K, Spiegel Y (eds) (2011) Biological control of plant-parasitic nematodes: 1 building coherence between microbial ecology and molecular mechanisms, progress in biological control. Springer Science+Business Media B.V, London

    Google Scholar 

  • Eissa MFM, Abd-Elgawad MMM (2015) Nematophagous bacteria as biocontrol agents of phytonematodes. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CAB International, Wallingford, pp 217–243

    Google Scholar 

  • El-Eslamboly AASA, Abd El-Wanis MM, Amin AW (2019) Algal application as a biological control method of root-knot nematode Meloidogyne incognita on cucumber under protected culture conditions and its impact on yield and fruit quality. Egypt J Biol Pest Control 29:18. https://doi.org/10.1186/s41938-019-0122-z

    Article  Google Scholar 

  • Esser, R.P. & El-Gholl, N.E. (1993). Paecilomyces lilacinus, a fungus that parasitizes nematode eggs. Nematology Circular No. 203, Division of Plant Industry, Florida, USA, 3 pp

    Google Scholar 

  • Garbeva P, van Veen JA, Van Elsas JD (2004) Microbialdiversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455

    Article  CAS  PubMed  Google Scholar 

  • Gerber JF & White JH (2005) Materials and methods for the efficient production of Pasteuria. U.S. Patent 6, 919, 197 B2

    Google Scholar 

  • Gerson U (2015) Mites as biocontrol agents of phytonematodes. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CAB International, Wallingford, pp 323–335

    Google Scholar 

  • Giblin-Davis RM, Williams DS, Bekal S, Dickson DW, Becker JO, Preston JF (2003) ‘Candidatus Pasteuria usgae’ sp. nov., an obligate endoparasite of the phytoparasitic nematode, Belonolaimus longicaudatus. Int J Syst Evol Microbiol 53:197–200

    CAS  PubMed  Google Scholar 

  • Giné A, Carrasquilla M, Martínez-Alonso M, Gaju N, Sorribas FJ (2016) Characterization of soil suppressiveness to root-knot nematodes in organic horticulture in plastic greenhouse. Front Plant Sci 7:164. https://doi.org/10.3389/fpls.2016.00164

    Article  PubMed  PubMed Central  Google Scholar 

  • Glare TR, Caradus J, Gelernter W, Jackson T, Keyhani N, Kohl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258

    CAS  PubMed  Google Scholar 

  • Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators ? Soil Biol Biochem 39:1–23. https://doi.org/10.1016/j.soilbio.2006.07.001

    Article  CAS  Google Scholar 

  • Jatala P (1986) Biological control of plant-parasitic nematodes. Annu Rev Phytopathol 24:453–489

    Google Scholar 

  • Kariuki GM, Dickson DW (2007) Transfer and development of Pasteuria penetrans. J Nematol 39:55–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerry B (1980) Biocontrol: fungal parasites of female cyst nematodes. J Nematol 12:253–259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerry B (1997) Biological control of nematodes: prospects and opportunities. In: Maqbool MA, Kerry B (eds) Plant nematode problems and their control in the near east region, vol 144. FAO Plant Production and Protection Paper, Pakistan, 326 pp

    Google Scholar 

  • Khan Z, Kim YH (2007) A review on the role of predatory soil nematodes in the biological control of plant parasitic nematodes. Appl Soil Ecol 35:370–379

    Google Scholar 

  • Kim YH (2015) Predatory nematodes as biocontrol agents of phytonematodes. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CAB International, Wallingford, pp 393–420

    Google Scholar 

  • Kiriga AW, Haukeland S, Kariuki GM, Coyne DL, Beek NV (2018) Effect of Trichoderma spp. and Purpureocillium lilacinum on Meloidogyne javanica in commercial pineapple production in Kenya. Biol Control 119:27–32

    Google Scholar 

  • Kokalis-Burelle N (2015) Pasteuria penetrans for control of Meloidogyne incognita on tomato and cucumber, and M. arenaria on snapdragon. J Nematol 47(3):207–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar T, Wahla V, Pandey P, Dubey RC, Maheshwari DK (2009) Rhizosphere competent Pseudomonas aeruginosa in the management of Heterodera cajani on sesame. World J Microbiol Biotechnol 25:277–285

    Google Scholar 

  • Luc JE, Crow WT, McSorley R, Giblin-Davis RM (2010a) Suppression of Belonolaimus longicaudatus with in vitro-produced Pasteuria sp. endospores. Nematropica 40(2):217–225

    Google Scholar 

  • Luc JE, Wenjing P, Crow WT, Giblin-Davis RM (2010b) Effects of formulation and host nematode density on the ability of in vitro-produced Pasteuria endospores to control its host Belonolaimus longicaudatus. J Nematol 42(2):87–90

    PubMed  PubMed Central  Google Scholar 

  • Martínez-Medina A, Roldán A, Pascual JA (2011) Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilization field condition in melon crops: growth response and Fusarium wilt biocontrol. Appl Soil Ecol 47(2):98–105

    Google Scholar 

  • McCarter JP (2008) Molecular approaches toward resistance to plant-parasitic nematodes. In: Berg RH, Taylor CG (eds) Cell biology of plant nematode parasitism—plant cell monographs. Springer, Berlin, pp 239–267

    Google Scholar 

  • McSorley R, Arnett JD, Bost SC, Carter WW, Hafez S, Johnson AW, Kirkpatrick T, Nyczepir AP, Radewald JD, Robinson AF, Schmitt DP (1987) Bibliography of estimated crop losses in the United States due to plant parasitic nematodes. Ann Appl Nematol 1:6–12

    Google Scholar 

  • Meyer SLF, Roberts DP, Chitwood DJ, Carta LK, Lumsden RD, Mao W (2001) Application of Burkholderia cepacia and Trichoderma virens, alone and in combinations, against Meloidogyne incognita on bell pepper. Nematropica 31:75–86

    Google Scholar 

  • Moosavi MR, Zare R (2015) Factors affecting commercial success of biocontrol agents of phytonematodes. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CAB International, Wallingford, pp 423–445

    Google Scholar 

  • Moosavi MR, Zare R, Zamanizadeh HR, Fatemy S (2010) Pathogenicity of Pochonia species on eggs of Meloidogyne javanica. J Invertebr Pathol 104:125–133

    PubMed  Google Scholar 

  • Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (2004) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Kowalchuk GA, de Bruijn FJ, Head IM, Akkermans AD, van Elsas JD (eds) Molecular microbial ecology manual, vol 1–2, 2nd edn. Springer, Dordrecht, pp 743–769

    Google Scholar 

  • Pettigrew WT, Meredith WR, Young LD (2005) Potassium fertilization effects on cotton lint yield, yield components, and reniform nematode populations. Agron J 97:1245–1251. https://doi.org/10.2134/agronj2004.0321

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, vanWees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. https://doi.org/10.1146/annurev-phyto-082712-102340

    Article  CAS  PubMed  Google Scholar 

  • Poinar GO Jr (1983) The natural history of nematodes. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Pyrowolakis A, Westphal A, Sikora RA, OleBecker J (2002) Identification of root-knot nematode suppressive soils. Appl Soil Ecol 19:51–56

    Google Scholar 

  • Sanda NB, Sunusi M (2014) Fundamentals of biological control of pests. IJCBS 1(6):1–11

    Google Scholar 

  • Sankaranarayanan C (2015) Arbuscular mycorrhizal fungi as biocontrol agents of phytonematodes. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CAB International, Wallingford, pp 365–389

    Google Scholar 

  • Sasser JN, Freckman DW (1987) A world perspective on nematology: the role of the society. In: Veech JA, Dickson DW (eds) Vistas on nematology. Society of Nematologists, Hyattsville, MD, pp 7–14

    Google Scholar 

  • Schouteden N, De Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280. https://doi.org/10.3389/fmicb.2015.01280

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharon E, Bar-Eyal M, Chet I, Herrera-Estrella A, Kleifeld O, Spiegel Y (2001) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91:687–693

    CAS  PubMed  Google Scholar 

  • Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour Technol 69:167–179

    CAS  Google Scholar 

  • Siddiqui ZA, Iqbal A, Mahmood I (2001) Effects of Pseudomonas fluorescens and fertilizers on the reproduction of Meloidogyne incognita and growth of tomato. Appl Soil Ecol 16:179–185

    Google Scholar 

  • Smalla K, Heuer H (2006) How to assess the abundance and diversity of mobile genetic elements in soil bacterial communities? In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Springer, Berlin, Heidelberg, pp 313–330

    Google Scholar 

  • Stirling GR (2011) Biological control of plant-parasitic nematodes: an ecological perspective, a review of progress and opportunities for further research. In: Davies KG, Spiegel Y (eds) Biological control of plant-parasitic nematodes: building coherence between microbial ecology and molecular mechanisms, progress in biological control 11. Springer Science + Business Media, Dordrecht, the Netherlands, pp 1–38

    Google Scholar 

  • Stirling GR (2014) Biological control of plant-parasitic nematodes, 2nd edn. CAB International, Wallingford

    Google Scholar 

  • Sturhan D, Hampel G (1977) Plant-parasitic nematodes as a prey of the bulb mite Rhizoglyphus echinopus (Acarina, Tyroglyphidae). Anzeiger fűr Schadlingskde, Pflanzenschutz, Umweltschutz 50:115–118

    Google Scholar 

  • Tian B, Yang J, Zhang KQ (2007) Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 61:197–213

    CAS  PubMed  Google Scholar 

  • Timper P (2011) Utilization of biological control for managing plant-parasitic nematodes. In: Davies K, Spiegel Y (eds) Biological control of plant-parasitic nematodes: 1 building coherence between microbial ecology and molecular mechanisms, progress in biological control. Springer Science+Business Media B.V, London, pp 259–290

    Google Scholar 

  • Tzortzakakis EA, Gowen SR, Goumas DE (1996) Decreased ability of Pasteuria penetrans spores to attach to successive generations of Meloidogyne javanica. Fundam Appl Nematol 19:201–204

    Google Scholar 

  • Wang J, Fu Z, Ren Q, Zhu L, Lin J, Zhang J, Cheng X, Ma J, Yue J (2019) Effects of arbuscular mycorrhizal fungi on growth, photosynthesis, and nutrient uptake of Zelkova serrata (Thunb.) Makino seedlings under salt stress. Forests 10:186. https://doi.org/10.3390/f10020186

    Article  Google Scholar 

  • Wani AM (2015) Plant growth-promoting rhizobacteria as biocontrol agents of phytonematodes. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CAB International, Wallingford, pp 339–362

    Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348. https://doi.org/10.1146/annurev.phyto.40.030402.110010

    Article  CAS  PubMed  Google Scholar 

  • Westphal A, Becker JO (1999) Biological suppression and natural population decline of Heterodera schachtii in a California field. Phytopathology 89:434–440

    CAS  PubMed  Google Scholar 

  • Westphal A, Becker JO (2001) Components of soil suppressiveness against Heterodera schachtii. Soil Biol Biochem 33:9–16. https://doi.org/10.1016/S0038-0717(00)00108-5

    Article  CAS  Google Scholar 

  • Wilson MJ, Jackson TA (2013) Progress in the commercialization of bionematicides. BioControl 58:715–722

    CAS  Google Scholar 

  • Wittwer SH (1981) The 20 crops that stand between man and starvation. Farm Chem 144:17–28

    Google Scholar 

  • Zhang L, Yang J, Niu Q, Zhao X, Ye F, Liang L, Zhang KQ (2008) Investigation on the infection mechanism of the fungus Clonostachys rosea against nematodes using the green fluorescent protein. Appl Microbiol Biotechnol 78:983–989

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by STDF via the US-Egypt Project cycle 17 (No. 172) entitled “Preparing and Evaluating IPM Tactics for Increasing Strawberry and Citrus Production.” This chapter is derived from the Subject Data funded in part by NAS and USAID, and that any opinions, findings, conclusions, or recommendations expressed in it are those of the authors alone, and do not necessarily reflect the views of USAID or NAS. The facilities and financial support offered by The National Research Centre via In-house project No. 12050105 entitled “Pesticide Alternatives Against Soil-Borne Pathogens and Pests Attacking Economically Important Solanaceous Crops” are appreciated.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abd-Elgawad, M.M.M. (2020). Plant-Parasitic Nematodes and Their Biocontrol Agents: Current Status and Future Vistas. In: Ansari, R., Rizvi, R., Mahmood, I. (eds) Management of Phytonematodes: Recent Advances and Future Challenges. Springer, Singapore. https://doi.org/10.1007/978-981-15-4087-5_8

Download citation

Publish with us

Policies and ethics