Skip to main content

Sustainable Management of Plant-Parasitic Nematodes: An Overview from Conventional Practices to Modern Techniques

  • Chapter
  • First Online:
Management of Phytonematodes: Recent Advances and Future Challenges

Abstract

Plant-parasitic nematodes are microscopic roundworms that live in many habitats. They cause substantial problems to major crops throughout the world, including vegetables, fruits, and grain crops. These may become a major threat to the agricultural production system worldwide if management fails. This chapter reviews the economic importance and diagnostic methods of plant-parasitic nematodes, including a comprehensive account of existing strategies used for their management ranging from conventional to modern techniques. Some important genera of plant-parasitic nematodes such as Meloidogyne spp., Heterodera spp., and Pratylenchus spp. have been ranked uppermost in the list of the most economically and scientifically significant species of nematodes due to their complicated relationship with the host plants, wide host range, and the level of damage due to infection in crops. Further, obstacles encountered in parasitic nematode diagnosis by classical morphology-based methods have been resolved by the adoption of novel molecular techniques, which are rapid, precise, and cost-effective. As far as the existing cultural management techniques are concerned, crop rotation with non-host crops can suppress a wide range of nematode species effectively, followed by the use of organic soil amendments. Nematicide application is effective when speedy control of nematodes is required; however, the use is reappraised due to environmental concerns. Biological control of nematodes by fungi and bacteria is highly favored due to its environmentally friendly nature. In addition, bio-pesticides are becoming a promising option for the management of plant-parasitic nematodes. Biotechnology-, molecular biology-, and nanotechnology-based approaches have added a new dimension to nematode disease diagnosis and management. Identification of genes that reduce nematode’s ability to reproduce has allowed the breeding of nematode-resistant plants. Marker-assisted selection, genetic engineering, and RNA interference to confer resistance in crop plants, nematode suppression using host plant proteinase inhibitors, and genome-editing technologies have helped tremendously in developing management strategies for plant-parasitic nematodes. In conclusion, a sustainable management of plant-parasitic nematodes is feasible when two or more compatible tactics are applied concurrently while appraising environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad P, Gouzy J, Aury J-M, Castagnone-Sereno P, Danchin EGJ, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC, Caillaud M-C, Coutinho PM, Dasilva C, De Luca F, Deau F, Esquibet M, Flutre T, Goldstone JV, Hamamouch N, Hewezi T, Jaillon O, Jubin C, Leonetti P, Magliano M, Maier TR, Markov GV, McVeigh P, Pesole G, Poulain J, Robinson-Rechavi M, Sallet E, Ségurens B, Steinbach D, Tytgat T, Ugarte E, van Ghelder C, Veronico P, Baum TJ, Blaxter M, Bleve-Zacheo T, Davis EL, Ewbank JJ, Favery B, Grenier E, Henrissat B, Jones JT, Laudet V, Maule AG, Quesneville H, Rosso M-N, Schiex T, Smant G, Weissenbach J, Wincker P (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26:909–915

    CAS  PubMed  Google Scholar 

  • Abbassy MA, Abdel-Rasoul MA, Nassar AMK, Soliman BSM (2017) Nematicidal activity of silver nanoparticles of botanical products against root knot nematode, Meloidogyne incognita. Arch Phytopathol Plant Prot 50(17-18):909–926. https://doi.org/10.1080/03235408.2017.1405608

    Article  CAS  Google Scholar 

  • Abd-Elgawad MM, Askary TH (2015) Impact of phytonematodes on agriculture economy. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CAB International, Wallingford, UK, pp 3–49

    Google Scholar 

  • Abdellatif KF, Abdelfattah RH, El-Ansary MSM (2016) Green nanoparticles engineering on root-knot nematode infecting eggplants and their effect on plant DNA modification. Iran J Biotechnol 14(4):250–259

    PubMed  PubMed Central  Google Scholar 

  • Abrantes IMO, Santos MCVD, Conceição ILPM, Cunha MJM, Santos MSNA (2004) Biochemical and molecular characterization of plant-parasitic nematodes. Phytopathol Mediterr 43:232–258

    CAS  Google Scholar 

  • Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism and applications. Microbiol Mol Biol Rev 67(4):657–685. https://doi.org/10.1128/MMBR.67.4.657-685.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agyarko K, Kwakye PK, Bonsu M, Osei BA, Fripong KA (2006) Effects of organic soil amendments on root-knot nematodes, soil nutrients and growth of carrot. J Agron 5(4):641–646

    Google Scholar 

  • Ahmed S (1988) Farmer pest-control practices in India: some observations. Final workshop of the IRRI-ADB-EWC project on botanical pest control in rice-based cropping systems. IRRI, LosBãnos, Philippines

    Google Scholar 

  • Ajaz S, Tiyagi SA (2003) Utilization of noxious weeds for the management of plant parasitic nematode infesting some vegetable crops. Arch Phytopathol Plant Prot 36:211–219

    Google Scholar 

  • Ajwa HA, Trout T (2004) Drip application of alternative fumigants to methyl bromide for strawberry production. Hortic Sci 39:1707–1715

    CAS  Google Scholar 

  • Akhtar M, Mahmood I (1996) Organic soil amendments in relation to nematode management with particular reference to India. Integr Pest Manag Rev 1(4):201–215

    Google Scholar 

  • Akhtar M, Mahmood I (1997) Control of root-knot nematode Meloidogyne incognita in tomato plants by seed coating with suneem and neem oil. J Pestic Sci 22:37–38

    CAS  Google Scholar 

  • Ali MA, Shahzadi M, Zahoor A, Dababat AA, Toktay H, Allah Bakhsh A, Nawaz MA, Li H (2019) Resistance to cereal cyst nematodes in wheat and barley: an emphasis on classical and modern approaches. Int J Mol Sci 20:432. https://doi.org/10.3390/ijms20020432

    Article  CAS  PubMed Central  Google Scholar 

  • Ammiraju J, Veremis J, Huang X, Roberts P, Kaloshian I (2003) The heat-stable root knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theor Appl Genet 106:478–484

    CAS  PubMed  Google Scholar 

  • Andreogloua FI, Vagelasa IK, Woodb M, Samalievc HY, Gowena SR (2003) Influence of temperature on the motility of Pseudomonas oryzihabitans and control of Globodera rostochiensis. Soil Biol Biochem 35:1095–1101

    Google Scholar 

  • Anon. (2018) Free-living and plant-parasitic nematodes (roundworms). https://www.apsnet.org/edcenter/disandpath/nematode/intro/Nematode/Pages/Background.aspx. Accessed on 30 Apr 2019

  • Anon. (2002) Agricultural statistics yearbook. Council of Agriculture, Executive Yuan, Taiwan, R. O. C.

    Google Scholar 

  • Ansari RA, Mahmood I (2017b) Determination of disease incidence caused by Meloidogyne spp. and or Fusarium udum on pigeonpea in Aligarh district: a survey. Trends Biosci 10(24):5239–5243

    Google Scholar 

  • Ansari RA, Mahmood I (2019a) Plant health under biotic stress: volume 2: microbial interactions. Springer, Singapore. https://doi.org/10.1007/978-981-13-6040-4

    Book  Google Scholar 

  • Ansari RA, Mahmood I (2019b) Plant health under biotic stress: volume 1: organic strategies. Springer, Singapore. https://doi.org/10.1007/978-981-13-6043-5

    Book  Google Scholar 

  • Ansari RA, Khan TA (2012a) Parasitic association of root-knot nematode, Meloidogyne incognita on guava. e-J Sci Technol (e-JST) 5:65–67

    Google Scholar 

  • Ansari RA, Khan TA (2012b) Diversity and community structure of phytonematodes associated with guava in and around Aligarh, Uttar Pradesh, India. Trends Biosci 5(3):202–204

    Google Scholar 

  • Ansari RA, Mahmood I (2017a) Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Sci Hortic 226:1–9

    CAS  Google Scholar 

  • Ansari RA, Mahmood I, Rizvi R, Sumbul A (2017b) Siderophores: augmentation of soil health and crop productivity. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics in agroecosystem. Springer, Singapore, pp 291–312

    Google Scholar 

  • Ansari RA, Rizvi R, Sumbul A, Mahmood I (2017a) PGPR: current vogue in sustainable crop production. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 455–472

    Google Scholar 

  • Ansari RA, Sumbul A, Rizvi R, Mahmood I (2019) Organic soil amendments: potential tool for soil and plant health management. In: Ansari RA, Mahmood I (eds) Plant health under biotic stress. Springer, Singapore, pp 1–35

    Google Scholar 

  • Anwar SA, Zia A, Hussain M, Kamran M (2007) Host suitability of selected plants to Meloidogyne incognita in the Punjab, Pakistan. Int Jf Nematol 17:144–150

    Google Scholar 

  • Ardakani AS (2013) Toxicity of silver, titanium and silicon nanoparticles on the root-knot nematode, Meloidogyne incognita, and growth parameters of tomato. Nematology 15(6):671–677. https://doi.org/10.1163/15685411-00002710

    Article  CAS  Google Scholar 

  • Asif M, Tariq M, Khan A, Siddiqui MA (2017) Biocidal and antinemic properties of aqueous extracts of Ageratum and Coccinia against root-knot nematode, Meloidogyne incognita in vitro. J Agric Sci 12(2):108–122. https://doi.org/10.4038/jas.v12i2.8229

    Article  Google Scholar 

  • Atkins S, Hidalgo-Diaz L, Kalisz H, Mauchline T, Hirsch P, Kerry B (2003) Development of a new management strategy for the control of root-knot nematodes (Meloidogyne spp) in organic vegetable production. Pest Manag Sci 59:183–189. https://doi.org/10.1002/ps.603

    Article  CAS  PubMed  Google Scholar 

  • Atungwu JJ, Ademola AA, Aiyelagbe IOO (2009) Evaluation of organic materials for inhibition of nematode reproduction in soybean. African Crop Sci J 17(4):167–173

    Google Scholar 

  • Bakr RA (2018) Bionematicidal potential of some incorporating plants on Meloidogyne javanica control on tomato. Int J Curr Microbiol App Sci 7(5):1457–1464

    Google Scholar 

  • Banerjee S, Banerjee A, Gill SS, Gupta OP, Dahuja A, Jain PK, Sirohi A (2017) RNA interference: a novel source of resistance to combat plant parasitic nematodes. Front Plant Sci 8:834. https://doi.org/10.3389/fpls.2017.00834

    Article  PubMed  PubMed Central  Google Scholar 

  • Banna L, Salem N, Ghrair AM, Habash SS (2018) Impact of silicon carbide nanoparticles on hatching and survival of soil nematodes Caenorhabditis elegans and Meloidogyne incognita. Appl Ecol Environ Res 16(3):2651–2662. https://doi.org/10.15666/aeer/1603_26512662

    Google Scholar 

  • Barker KR (1997) Opportunities for integrated management of plant-parasitic nematodes in the Near East. In: Plant nematode problems and their control in the near east region. FAO Plant Production and Protection Paper, 144

    Google Scholar 

  • Barker KR (1998) Introduction and synopsis of advancement in nematodes. In: Barker KR, Pederson GA, Windham GL (eds) Plant nematode interactions, 1st edn. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, WI, pp 1–20

    Google Scholar 

  • Barron GL (1977) The nematode-destroying fungi. Canadian Biological Publications Ltd., Guelph

    Google Scholar 

  • Bawa JA, Mohammed I, Liadi S (2014) Nematicidal effect of some plants extracts on root-knot nematodes (Meloidogyne incognita) of tomato (Lycopersicon esculentum). World J Life Sci Med Res 3(3):81–87

    Google Scholar 

  • Bekal S, Borneman J, Springer MS, Giblin-Davis RM, Becker JO (2001) Phenotypic and molecular analysis of a Pasteuria strain parasitic to the sting nematode. J Nematol 33:110–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berry SD, Fargette M, Spaull VW, Morand S, Cadet P (2008) Detection and quantification of root-knot nematode (Meloidogyne javanica), lesion nematode (Pratylenchus zeae) and dagger nematode (Xiphinema elongatum) parasites of sugarcane using real-time PCR. Mol Cell Probes 22:168–176

    CAS  PubMed  Google Scholar 

  • Besnard G, Jühling F, Chapuis E, Zedane L, Huillier E, Mateille T, Bellafiore S (2014) Fast assembly of the mitochondrial genome of a plant parasitic nematode (Meloidogyne graminicola) using next generation sequencing. C R Biol 337:295–301

    PubMed  Google Scholar 

  • Bhau BS, Phukon P, Ahmed B, Gogoi B, Borah B, Baruah J, Sharma DK, Wann SB (2016) A novel tool of nanotechnology: nanoparticle mediated control of nematode infection in plants. In: Singh D, Singh H, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2644-4_16

    Chapter  Google Scholar 

  • Bilgrami AL, Gaugler R, Brey C (2005) Prey preference and feeding behavior of the diplogasterid predator Mononchoides gaugleri (Nematoda: Diplogasterida). Nematology 7:333–342

    Google Scholar 

  • Bird DM, Opperman CH, Davies KG (2003) Interaction between bacteria and plant-parasitic nematodes: now and then. Int J Parasitol 33:1269–1276

    CAS  PubMed  Google Scholar 

  • Blok VC, Powers TO (2009) Biochemical and molecular identification. In: Perry RN, Moens M, Star JL (eds) Root knot nematodes, 1st edn. CABI International, London, pp 98–112

    Google Scholar 

  • Blok VC (2005) Achievements in and future prospects for molecular diagnosis of plant parasitic nematodes. Can J Plant Pathol 27:176–185

    CAS  Google Scholar 

  • Borrelli VMG, Brambilla V, Rogowsky P, Marocco A, Lanubile A (2018) The enhancement of plant disease resistance using CRISPR/Cas9 technology. Front Plant Sci 9:1245; https://www.frontiersin.org/article/10.3389/fpls.2018.01245. Accessed on 04 Apr 2019

    PubMed  PubMed Central  Google Scholar 

  • Bradfish GA, Hickle LA, Flores R, Schwab G (1991) Nematicidal Bacillus thuringiensis toxins: opportunities in animal health and plant protection. In: First international conference on Bacillus thuringiensis. St. Catherine’s College, Oxford, UK, p 33

    Google Scholar 

  • Braun-Kiewnick A, Kiewnick S (2018) Real-time PCR, a great tool for fast identification, sensitive detection and quantification of important plant parasitic nematodes. Eur J Plant Pathol 152(2):271–283

    CAS  Google Scholar 

  • Bridge J, Starr JL (2007) Plant nematodes of agricultural importance. Academic Press, San Diego

    Google Scholar 

  • Bridge J (1996) Nematode management in sustainable and subsistence agriculture. Annu Rev Phytopathol 34:201–225

    CAS  PubMed  Google Scholar 

  • Britton C, Roberts B, Marks N (2016) Functional genomics tools for Haemonchus contortus and lessons from other Helminths. Adv Parasitol 93:599–623

    CAS  PubMed  Google Scholar 

  • Brodie BB, Murphy WS (1975) Population dynamics of plant nematodes as affected by combinations of fallow and cropping sequence. J Nematol 7:91–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown RH (1987) Control strategies in low-value crops. In: Brown RH, Kerry BR (eds) Principles and Practice of Nematode Control in Crops. Academic Press, Sydney, Australia, pp 351–388

    Google Scholar 

  • Cai D, Kleine M, Kifle S, Harloff HJ, Sandal NN, Marcker KA, Klein-Lankhorst RM, Salentijn EM, Lange W, Stiekema WJ, Wyss U, Grundler FM, Jung C (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275:832–834

    CAS  PubMed  Google Scholar 

  • Cai D, Thurau T, Tian Y, Lange T, Yeh KW, Jung C (2003) Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots. Plant Mol Biol 51:839–849. https://doi.org/10.1023/A:1023089017906

    Article  CAS  PubMed  Google Scholar 

  • Cao ZP, Yu YL, Chen GK, Dawson R (2004) Impact of soil fumigation practices on soil nematodes and microbial biomass. Pedoshpere 14:387–393

    Google Scholar 

  • Carneiro RMDG, Correa VR, Almeida RMA, Gomes ACMM, Deimi AM, Castagnone-Sereno P, Karssen G (2014) Meloidogyne luci n. sp. (Nematoda: Meloidogynidae), a root-knot nematode parasitising different crops in Brazil, Chile and Iran. Nematology 16(3):1–13

    Google Scholar 

  • Carneiro RMDG, Dos Santos MFA, Almeida MRA, Mota FC, Gomes ACMM, Tigano MS (2008) Diversity of Meloidogyne arenaria using morphological, cytological and molecular approaches. Nematology 10:819–834

    CAS  Google Scholar 

  • Carneiro RMDG, Lima FSO, Correia VR (2017) Methods and tools currently used for the identification of plant parasitic nematodes. doi: https://doi.org/10.5772/intechopen.69403. Accessed 28 Apr 2019

  • Carneiro RMDG, Monteiro JMS, Silva UC, Gomes G (2016) Gênero Meloidogyne: diagnose através de eletroforese de isoenzimas e marcadores SCAR. In: Oliveira CMG, Santos MA, Castro LHS (eds) Diagnose de fitonematoides, 3rd edn. Millennium Editora, Campinas, pp 47–72

    Google Scholar 

  • Carneiro RMDG, Tigano MS, Randig O, Almeida MRA, Sarah JL (2004) Identification and genetic diversity of Meloidogyne spp. (Tylenchida: Meloidogynidae) on coffee from Brazil, Central America and Hawaii. Nematology 6:287–298

    Google Scholar 

  • Carrillo L, Martinez M, Ramessar K, Cambra I, Castanera P (2011) Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases. Plant Cell Rep 30:101–112

    CAS  PubMed  Google Scholar 

  • Castagnone-Sereno P (2011) Molecular tools for diagnosis. In: Jones J, Gheisen G, Fenoll C (eds) Genomics and molecular genetics of plant nematode interactions, 1st edn. Springer, New York, pp 443–464

    Google Scholar 

  • Castillo P, Vovlas N (2007) Pratylenchus (Nematodea: Pratylenchidae): diagnosis, biology, pathogenicity and management, Nematology monographs and perspectives. Brill, Leiden, the Netherlands, p 529

    Google Scholar 

  • Chan YL, He Y, Hsiao T-T, Wang CJ, Tian Z, Yeh KW (2015) Pyramiding taro cystatin and fungal chitinase genes driven by a synthetic promoter enhances resistance in tomato to root-knot nematode Meloidogyne incognita. Plant Sci 231:74–81. https://doi.org/10.1016/j.plantsci.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  • Chan Y, Yang A, Chen J, Yeh K, Chan M (2010) Heterologous expression of taro cystatin protects transgenic tomato against Meloidogyne incognita infection by means of interfering sex determination and suppressing gall formation. Plant Cell Rep 29:231–238. https://doi.org/10.1007/s00299-009-0815-y

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Tsay TT (2006) Effect of crop rotation on Meloidogyne spp. and Pratylenchus spp. populations in strawberry fields in Taiwan. J Nematol 38(3):339–344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Yang B, Liu X, Chen F, Ge F (2017) Long-term cultivation of Bt rice expressing the Cry1Ab/1Ac gene reduced phytoparasitic nematode abundance but did not affect other nematode parameters in paddy fields. Sci Total Environ 607:463–474

    PubMed  Google Scholar 

  • Chen ZX, Dickson DW (1998) Review of Pasteuria penetrans: biology, ecology, and biological control potential. J Nematol 30:313–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chindo PS, Khan FA (1990) Control of root-knot nematodes, Meloidogyne spp., on tomato, Lycopersicon esculentum Mill., with poultry manure. Trop Pest Manag 36:332–335

    Google Scholar 

  • Chitwood DJ (2002) Phytochemical based strategies for nematode control. Annu Rev Phytopathol 40:221–249

    CAS  PubMed  Google Scholar 

  • Chitwood DJ (2003) Nematicides. In: Plimmer JR (ed) Encyclopedia of agrochemicals, vol 3. Wiley, New York, NY, pp 1104–1115

    Google Scholar 

  • Chu Y, Wu CL, Holbrook CC, Tillman BL, Person G, Ozias-Akins P (2011) Marker assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome 4:110–117

    CAS  Google Scholar 

  • Clark FE, Paul EA (1970) The microflora of grassland. Adv Agron 22:375–435

    CAS  Google Scholar 

  • Collins HP, Alva A, Boydston RA, Cochran RL, Hamm PB, McGuire A, Riga E (2006) Soil microbial, fungal, and nematode responses to soil fumigation and cover crops under potato production. Biol Fertil Soils 42(3):247–257

    CAS  Google Scholar 

  • Concibido VC, Diers BW, Arelli PR (2004) A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci 44:1121–1131

    CAS  Google Scholar 

  • Correa VR, Mattos VS, Almeida MRA, Santos MFA, Tigano MS, Castagnone-Sereno P, Carneiro RMDG (2014) Genetic diversity of the root-knot nematode Meloidogyne ethiopica and development of a species-specific SCAR marker for its diagnosis. Plant Pathol 63(2):476–483

    CAS  Google Scholar 

  • Correa VR, Santos MFA, Almeida MRA, Peixoto JR, Castagnone-Sereno P, Carneiro RMDG (2013) Species-specific DNA markers for identification of two root-knot nematodes of coffee: Meloidogyne arabicida and M. izalcoensis. Eur J Plant Pathol 137:305–313

    CAS  Google Scholar 

  • Cromwell WA, Yang J, Starr JL, Jo YK (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. J Nematol 46(3):261–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crump DH, Sayre RM, Young LD (1983) Occurrence of nematophagous fungi in cyst nematode populations. Plant Dis 67:63–64

    Google Scholar 

  • Cunha TG, Visôtto LE, Lopes EA, Oliveira CMG, God PIVG (2018) Diagnostic methods for identification of root-knot nematodes species from Brazil. Ciência Rural 48(2):1–11

    Google Scholar 

  • Curran J, Baillie DL, Webster JM (1985) Use of genomic DNA restriction fragment length polymorphism to identify nematode species. Parasitology 90:137–144

    Google Scholar 

  • D’Addabbo T, Fntanazza G, Lamberti F, Sasanelli N, Patumi M (1997) The suppressive effect of soil amendments with olive residues on Meloidogyne incognita. Nematol Mediterr 25:195–198

    Google Scholar 

  • Dackman C, Jansson HB, Nordbring-Hertz B (1992) Nematophagous fungi and their activities in soil. In: Stotsky G, Bollag JM (eds) Soil biochemistry, vol 7. Marcel Dekker, New York

    Google Scholar 

  • Davies KG, Curtis RH, Evans K (1996) Serologically based diagnostic and quantification tests for nematodes. Pestic Sci 47:81–87

    Google Scholar 

  • De Bach P (1964) Biological control of insect pests and weeds, 1st edn. Chapman and Hall, London

    Google Scholar 

  • de Leij FAAM, Kerry BR (1991) The nematophagous fungus Verticillium chlamydosporium as a potential biological control agent for Meloidogyne arenaria. Rev Nematol 14:157–164

    Google Scholar 

  • Dickinson DJ, Goldstein B (2016) CRISPR-based methods for Caenorhabditis elegans genome engineering. Genetics 202:885–901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dijksterhuis J, Sjollema KA, Veenhuis M, Harder W (1994) Competitive interactions between two nematophagous fungi during infection and digestion of the nematode Panagrellus redivivus. Mycol Res 98:1458–1462

    Google Scholar 

  • Dinh P, Brown C, Elling A (2014) RNA interference of effector gene Mc16D10L confers resistance against Meloidogyne chitwoodi in Arabidopsis and potato. Phytopathology 104:1098–1106. https://doi.org/10.1094/PHYTO-03-14-0063-R

    Article  CAS  PubMed  Google Scholar 

  • Dong LQ, Zhang KQ (2006) Microbial control of plant-parasitic nematodes: a five-party interaction. Plant and Soil 288(1–2):31–45. https://doi.org/10.1007/s11104-006-9009-3

    Article  CAS  Google Scholar 

  • Dongre M, Sobita S (2013) Efficacy of certain botanical extracts in the management of Meloidogyne graminicola of rice. Int J Agric Sci Res 3(3):91–98

    Google Scholar 

  • Duncan LW, Noling JW (1998) Agricultural sustainability and nematode integrated pest management. In: Barker KR, Pederson GA, Windham GL (eds) Plant nematode interactions. American Society of Agronomy, Madison. pp 251–87

    Google Scholar 

  • Dutta TK, Khan MR, Phani V (2019) Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: current status and future prospects. Curr Plant Biol 17:17–32. https://doi.org/10.1016/j.cpb.2019.02.001

    Article  Google Scholar 

  • Dutta T, Banakar P, Rao U (2015) The status of RNAi-based transgenics in plant nematology. Front Microbiol 5:760. https://doi.org/10.3389/fmicb.2014.00760

    Article  PubMed  PubMed Central  Google Scholar 

  • Eastwood RF, Lagudah ES, Appels R, Hannah M, Kollmorgen JF (1991) Triticum tauschii: a novel source of resistance to cereal cyst nematode (Heterodera avenae). Aust J Agr Res 42(1):69–77

    Google Scholar 

  • Eastwood RF, Smith A, Wilson J (1994) Pratylenchus thornei is causing yield losses in Victorian Wheat Crops. Aust Nematol Newslett 5:2

    Google Scholar 

  • Egunjobi OA, Larinde MA (1975) Nematodes and maize growth in Nigeria. II. Effects of some amendments on populations of Pratylenchus brachyurus and on growth and production of maize (Zea mays) in Nigeria. Nematol Mediterr 3:65–73

    Google Scholar 

  • Elmali M (2002) The distribution and damage of wheat gall nematode [A. tritici (Steinbuch)] (Tylenchida: Tylenchidae) in western part of Anatolia. Turkish J Entomol 26(2):105–114

    Google Scholar 

  • El-Rokiek KG, El-Nagdi WM (2011) Dual effects of leaf extracts of Eucalyptus citriodora on controlling purslane and root-knot nematode in sunflower. J Plant Prot Res 51(2):121–129

    Google Scholar 

  • Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a (Gram1) positive perspective. FEMS Microbiol Lett 171:1–9

    CAS  PubMed  Google Scholar 

  • Esbenshade P, Triantaphyllou A (1985) Use of enzyme phenotypes for identification of Meloidogyne species. J Nematol 17:6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans K, Trudgil DL, Webster JM (1993) Extraction, identification and control of plant parasitic nematodes. In: Evans K, Trudgil DL, Webster JM (eds) Plant parasitic nematodes in temperate agriculture. CAB International Publishing, Wallingford, UK, pp 648–649

    Google Scholar 

  • Feizi A, Mahdikhani-Moghadam E, Azizi M, Roohani H (2014) Inhibitory effect of Allium cepa var. aggregatum, Salvia officinalis and Kelussiaodor atissima essence on the root-knot nematode (Meloidogyne javanica) and extraction of active ingredients. J Plant Prot 28:220–225

    Google Scholar 

  • Ferris H, Matute MM (2003) Structural and functional succession in the nematode fauna of a soil food web. Appl Soil Ecol 23:93–110

    Google Scholar 

  • Ferris H, Bongers T, de Goede RGM (2001) A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Appl Soil Ecol 18:13–29

    Google Scholar 

  • Filipiak A, Wieczorek P, Tomalak M (2017) Multiplex polymerase chain reaction for simultaneous detection and identification of Bursaphelenchus xylophilus, B. mucronatus and B. fraudulentus—three closely related species within the Xylophilus group. Nematology 19:1107–1116

    Google Scholar 

  • Fire A, SiQun X, Montgomery M, Kostas S, Driver S, Mello C (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811. https://doi.org/10.1038/35888

    Article  CAS  PubMed  Google Scholar 

  • Fleming C, Shields R, Stratford R (1993). Identification of potato cyst nematodes using the polymerase chain reaction. In: Proceedings of crop protection in Northern Britain, pp 183–188

    Google Scholar 

  • Florini DA, Loria R (1986) Changes in population densities of Pratylenchus penetrans and Pratylenchus crenatus on winter cover crops. J Nematol 18:607

    Google Scholar 

  • Fortnum BA, Lewis SA, Johnson AW (2001) Crop rotation and nematicides for management of mixed populations of Meloidogyne spp. on tobacco. Suppl J Nematol 33:318–324

    CAS  Google Scholar 

  • Fosu-Nyarko J, Jones MGK (2015) Application of biotechnology for nematode control in crop plants. Adv Botanical Res 73:340–376

    Google Scholar 

  • Françoisa C, Kebdania N, Barkerb I, Tomlinson J, Boonham N, Castagnone-Sereno P (2006) Towards specific diagnosis of plant-parasitic nematodes using DNA oligonucleotide microarray technology: a case study with the quarantine species Meloidogyne chitwoodi. Mol Cell Probes 20(1):64–69

    Google Scholar 

  • Freire FCO, Bridge J (1985) Parasitism of eggs, females and juveniles of Meloidogyne incognita by Paecilomyces lilacinus and Verticillium chlamydosporium. Fitopatol Braz 10:577–596

    Google Scholar 

  • Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10:741–743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara R, Kurogi S, Nagatomo Y, Takaki H (1997) Identification of Meloidogyne spp. by enzyme linked immunosorbent assay using monoclonal antipbody. In: Proceedings of the association for plant protection of Hyushu, vol 43, pp 94–96.

    Google Scholar 

  • Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180:27–44. https://doi.org/10.1111/j.1469-8137.2008.02508.x

    Article  CAS  PubMed  Google Scholar 

  • Gams W, Zare R (2003) A taxonomic review of the clavicipitaceous anamorphs parasitizing nematodes and other microinvertebrates. In: White JF Jr, Bacon CW, Hywel-Jones NL, Spatafora JW (eds) Clavicipitalean fungi: evolutionary biology, chemistry, and cultural impacts. Marcel Dekker, New York, pp 26–81

    Google Scholar 

  • Gan J, Yates SR, Wang D, Ernst FF (1998) Effect of application methods on 1,3-dichloropropene volatilization from soil under controlled conditions. J Environ Qual 27:432–438

    CAS  Google Scholar 

  • Ganal MW, Tanksley SD (1996) Recombination around the Tm2a and Mi resistance genes in different crosses of Lycopersicon peruvianum. Theor Appl Genet 92:101–108

    CAS  PubMed  Google Scholar 

  • Garcia GM, Stalker HT, Shroeder E, Kochert G (1996) Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome 39:836–845

    CAS  PubMed  Google Scholar 

  • Gasser RB, Bott NJ, Chilton NB, Hunt P, Beveridge I (2008) Toward practical, DNA based diagnostic methods for parasitic nematodes of livestock-bionomic and biotechnological implications. Biotechnol Adv 26:325–334

    CAS  PubMed  Google Scholar 

  • Giannakou IO, Sidiropoulos A, Prophetou-Athanasiadou D (2002) Chemical alternatives to methyl bromide for the control of root-knot nematodes in greenhouses. Pest Manag Sci 58:290–296

    CAS  PubMed  Google Scholar 

  • Gokta N, Swarup G (1988) On the potential of some bacterial biocides against root-knot cyst nematodes. Indian J Nematol 18:152–153

    Google Scholar 

  • Gonzalez A, Canto-Sanenz M (1993) Comparison of live organic amendments for the control of Globodera pallida in microplots in Peru. Nematropica 23:133–139

    Google Scholar 

  • Gowen SR (1997) Chemical control of nematodes: efficiency and side-effects. FAO Plant Production and Protection Paper, 144, pp 59–65. http://www.fao.org/3/v9978e/v9978e08.htm. Accessed 12 Apr 2019

  • Grainger J (1964) Factors affecting the control of eelworm diseases. Nematologica 10:5–20

    Google Scholar 

  • Hackney RW, Dickerson OJ (1975) Marigold, castor bean, and chrysanthemum as controls of Meloidogyne incognita and Pratylenchus alleni. J Nematol 7:84–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads- a baiting and iterative mapping approach. Nucleic Acids Res 41(2013):e129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn ML, Burrows PR, Wright DJ (1996) Genomic diversity between Radopholus similis populations from around the world detected by RAPD-PCR analysis. Nematologica 42:537–545

    Google Scholar 

  • Hallmann J, Davies KG, Sikora RA (2009) Biological control using microbial pathogens, endophytes and antagonists. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CABI, Wallingford

    Google Scholar 

  • Han H, Cho MR, Jeon HJ, Lim CK, Jang HI (2004) PCR-RFLP identification of three major Meloidogyne species in Korea. J Asia Pac Entomol 7(2):171–175

    Google Scholar 

  • Hebert PD, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Royal Soc London 270(1512):313–321. https://doi.org/10.1098/rspb.2002.2218

    Article  CAS  Google Scholar 

  • Heller R, Schondelmaier J, Steinrücken G, Jung C (1996) Genetic localization of four genes for nematode (Heterodera schachtii Schm.) resistance in sugar beet (Beta vulgaris L.). Theor Appl Genet 92:991–997

    CAS  PubMed  Google Scholar 

  • Hill SN (1988) Cultural practices for the management of plant-parasitic nematodes. Ornamentals Northwest Ach 12(4):7–9

    Google Scholar 

  • Hossain M, Ahmadi MU, Ahmed N, Abulhossain M, Alim MA (2002) A study on control of root-knot nematode (Meloidogyne javanica) of wheat. Indian Agriculturist 46:121–128

    Google Scholar 

  • Hu MX, Zhuo K, Liao JL (2011) Multiplex PCR for the simultaneous identification and detection of Meloidogyne incognita, M. enterolobii and M. javanica using DNA extracted directly from individual galls. Phytopathology 101(11):1270–1277

    CAS  PubMed  Google Scholar 

  • Huang G, Allen R, Davis E, Baum T, Hussey R (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematodeparasitism gene. PNAS 103:14302–14306. https://doi.org/10.1073/pnas.0604698103

    Article  CAS  PubMed  Google Scholar 

  • Huang SP (1994) Cropping effects of marigold, corn, and okra on population levels of Meloidogyne javanica and carrot yields. J Nematol 16:396–398

    Google Scholar 

  • Hugot JP, Baujard P, Morand S (2001) Biodiversity in helminthes and nematodes as a field of study. Nematology 3:199–208

    Google Scholar 

  • Hunt D, Handoo Z (2009) Taxonomy, identification and principal species. In: Perry RN, Moens M, Star JL (eds) Root knot nematodes (pp 55–88), 1st edn. CABI International, London

    Google Scholar 

  • Ibekwe M (2004) Effects of fumigants on non-target organisms in soils. Adv Agron 83:1–35

    CAS  Google Scholar 

  • Ibrahim AAM, Al-Hazmi AS, Al-Yahya FA, Alderfasi AA (1999) Damage potential and reproduction of Heterodera avenae on wheat and barley under Saudi field conditions. Nematology 1(6):625–630

    Google Scholar 

  • Insunza V, Alstrom S, Eriksson KB (2002) Root bacteria from nematicidal plants and their biocontrol potential against trichodorid nematodes in potato. Plant and Soil 241:271–278

    CAS  Google Scholar 

  • ISO (2008) Nanotechnologies—terminology and definitions for nano objects - nanoparticle, nanofibre and nanoplate. http://www.iso.org/iso/iso_catalogue.htm. Accessed 12 Apr 2019

  • Jacquet M, Bongiovanni M, Martinez M, Verschave P, Wajnberg E, Catagnone-Sereno P (2005) Variation in resistance to the root-knot nematode Meloidogyne incognita in tomato genotypes bearing the Mi gene. Plant Pathol 54:93–99

    Google Scholar 

  • Jaffee BA, Muldoon AE (1989) Suppression of cyst nematode by natural infestation of a nematophagous fungus. J Nematol 21:505–510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffee BA (1992) Population biology and biological control of nematodes. Can J Microbiol 38:359–364

    CAS  PubMed  Google Scholar 

  • Jansson HB (1994) Adhesion of conidia of Drechmeria coniospora to Caenorhabditis elegans wild type and mutants. J Nematol 26:430–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaouannet M, Magliano M, Arguel M, Gourgues M, Evangelisti E, Abad P, Rosso M (2013) The root-knot nematode calreticulin Mi-CRT is a key effector in plant defense suppression. Mol Plant Microbe Interact 26:97–105. https://doi.org/10.1094/MPMI-05-12-0130-R

    Article  CAS  PubMed  Google Scholar 

  • Jatala P (1986) Biological control of plant parasitic nematodes. Annu Rev Phytopathol 24:453–489

    Google Scholar 

  • Jayakumar J, Ramakrishnan S, Rajendran G (2002) Bio-control of reniform nematode, Rotylenchulus reniformis through fluorescent Pseudomonas. Pesttology 26:45–46

    Google Scholar 

  • Jenkins WR (1964) A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis Rep 48:692

    Google Scholar 

  • Johnathan EI, Pandiarajan P (1991) Effect of soil amendments in controlling rice root nematodes. Int Rice Res Newslett 16:25

    Google Scholar 

  • Johnson AW (1982) Managing nematode populations in crop production. In: Riggs Rd (ed) Nematology in the southern region of the United States, South. Coop. Ser. Bull. 276, pp 193–203

    Google Scholar 

  • Johnson AW (1985) Specific crop rotation effects combined with cultural practices and nematodes. In: Sasser JN, Carter CC (eds) An advanced treatise on meloidogyne, Volume I. North Carolina State University Graphics, Raleigh, NC, pp 283–301

    Google Scholar 

  • Jordan S (2017) Yield to the resistance: the impact of nematode resistant varieties on alfalfa yield. Nat Resour Model 31(2):e12150. https://doi.org/10.1111/nrm.12150

    Article  Google Scholar 

  • Karajeh M (2008) Interaction of root-knot nematode (Meloidogyne Javanica) and tomato as affected by hydrogen peroxide. J Plant Prot Res 48(2):2

    Google Scholar 

  • Kathy M (2000) Root-parasitic nematode host range and damage levels on Oregon vegetable crops: a literature survey. Nematode Testing Service, Extension Plant Pathology Oregon

    Google Scholar 

  • Kaushal KK (1998) Management of nematodes infecting wheat. Summer School Report, Division of Nematology, IARI, New Delhi, pp 1–8

    Google Scholar 

  • Kennedy MJ, Schoelz JE, Donald PA, Niblack TL (1997) Unique immunogenic proteins in Heterodera glycines eggshells. J Nematol 29:276–281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kepenekçi I, Erdoğuş D, Erdoğan P (2016) Effects of some plant extracts on root-knot nematodes in vitro and in vivo conditions. Türkish J Entomol 40(1):3–14. https://doi.org/10.16970/ted.84688

    Article  Google Scholar 

  • Kerry BR, Crump DH (1980) Two fungi parasitic on females of cyst nematodes (Heterodera spp.). Trans Br Mycol Soc 74:119–125

    Google Scholar 

  • Kerry BR, Hominick WM (2002) Biological control. In: Lee DL (ed) The biology of nematodes. Taylor & Francis, London

    Google Scholar 

  • Kerry BR (2000) Rhizosphere interactions and exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38:423–441

    CAS  PubMed  Google Scholar 

  • Khan A, Tariq M, Asif M, Siddiqui MA (2017) Evaluation of botanicals toxicants against root knot nematode, Meloidogyne incognita in vitro. Asian J Biol 4(3):1–7. https://doi.org/10.9734/AJOB/2017/38376

    Article  CAS  Google Scholar 

  • Khan MR, Mukhopadhyay AN, Pandey RN, Thakur MP, Singh D, Siddiqui MA, Akram M, Mohiddin FA, Haque Z (2019) Biointensive approaches: application and effectiveness in the management of plant nematodes, insects and weeds. Indian Phytopathological Society, New Delhi, pp 1–698

    Google Scholar 

  • Khan Z, Kim YH (2005) The predatory nematode, Mononchoides fortidens (Nematoda: Diplogasterida), suppresses the root-knot nematode, Meloidogyne arenaria, in potted field soil. Biol Control 35:78–82

    Google Scholar 

  • Khatodia S, Bhatotia K, Passricha N, Khurana SMP, Tuteja N (2016) CRISPR/Cas genome-editing tool: application in improvement of crop. Front Plant Sci 7:506. https://doi.org/10.3389/fpls.2016.00506

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiewnick S, Holterman M, van den Elsen S, van Megen H, Frey JE, Helder J (2014) Comparison of two short DNA barcoding loci (COI and COII) and two longer ribosomal DNA genes (SSU & LSU rRNA) for specimen identification among quarantine root-knot nematodes (Meloidogyne spp.) and their close relatives. Eur J Plant Pathol 140(1):97–110. https://doi.org/10.1007/s10658-014-0446-1

    Article  CAS  Google Scholar 

  • Kiewnick S, Wolf W, Willareth M, Frey J (2013) Identification of the tropical root-knot nematode species Meloidogyne incognita, M. javanica and M. arenaria using a multiplex PCR assay. Nematology 15:891–894. https://doi.org/10.1163/15685411-00002751

    Article  Google Scholar 

  • King BA, Taberna JP Jr (2013) Site-Specific management of Meloidogyne chitwoodi in Idaho potatoes using 1,3-Dichloropropene; approach, experiences, and economics. J Nematol 45:202–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick TL, Thomas AC (2007) Crop rotation for management of nematodes in cotton and soybean. Cooperative Extension Service, University of Arkansas, US Department of Agriculture, and county governments cooperating

    Google Scholar 

  • Kloepper JW, Rodriguez-Kabana R, Mcinroy JA, Young RW (1992) Rhizosphere bacteria antagonistic to soybean cyst (Heterodera glycines) and root-knot (Meloidogyne incognita) nematodes: identification by fatty acid analysis and frequency of biological control activity. Plant and Soil 139:75–84

    CAS  Google Scholar 

  • Kokalis-Burelle N, Vavrina CS, Rosskopf EN, Shelby RA (2002) Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant and Soil 238:257–266

    CAS  Google Scholar 

  • Kort J (1972) Nematode diseases of cereals of temperate climates. In: Webster JM (ed) Economic nematology. Academic, New York, NY, pp 97–126

    Google Scholar 

  • Kotze AC, O’Grady J, Gough JM, Pearson R, Bagnall NH, Kemp DH, Akhurst RJ (2005) Toxicity of Bacillus thuringiensis to parasitic and free-living life stages of nematodes parasites of livestock. Int J Parasitol 35:1013–1022

    CAS  PubMed  Google Scholar 

  • Krebs B, Hoeding B, Kuebart S, Workie MA, Junge H, Schmiedeknecht G, Grosch R, Bochow H, Hevesi M (1998) Use of Bacillus subtilis as biocontrol agent. I. Activities and characterization of Bacillus subtilis strains. J Plant Dis Prot 105:181–197

    Google Scholar 

  • Kretschmer J, Chalmers K, Manning S, Karakousis A, Barr A, Islam A, Logue S, Choe Y, Barker S, Lance R (1997) RFLP mapping of the Ha 2 cereal cyst nematode resistance gene in barley. Theor Appl Genet 94(8):1060–1064

    CAS  Google Scholar 

  • Kumar A, Kakrana A, Sirohi A, Subramaniam K, Srinivasan R, Abdin M, Jain PK (2017) Host-delivered RNAi-mediated root-knot nematode resistance in Arabidopsis by targeting splicing factor and integrase genes. J General Plant Pathol 83(2):91–97

    CAS  Google Scholar 

  • Kumari S, Decraemer W, De Luca F, Tiefenbrunner W (2010) Cytochrome c oxidase subunit 1 analysis of Xiphinema diversicaudatum, X. pachtaicum, X. simile and X. vuittenezi (Nematoda, Dorylaimida). Eur J Plant Pathol 127:493–499

    CAS  Google Scholar 

  • Leader AJ, Busacca J, Dawson J, Lyall T, Eelen H (2010) Is there a future for 1,3-dichloropropene and other chemical soil fumigants in European agriculture? Acta Hortic 883:67–73

    Google Scholar 

  • Lehman PS (1979) Seed and leaf gall nematodes of the genus Anguina occurring in North America. Nematology Circular No. 55, September 1979

    Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429

    CAS  PubMed  Google Scholar 

  • Lewis JG, Matic M, McKay AC (2009) Success of cereal cyst nematode resistance in Australia: history and status of resistance screening systems. In: Riley IT, Nicol JM, Dababat AA (eds) Cereal cyst nematode: status, research and outlook, pp. 137–142, Proceedings of the first workshop of the international cereal cyst nematode initiative, Antalya, Turkey

    Google Scholar 

  • Li B, Xie GL, Soad A, Coosemans J (2005) Suppression of Meloidogyne javanica by antagonistic and plant growth promoting rhizobacteria. J Zhejiang Univ Sci B 6:496–501

    PubMed  PubMed Central  Google Scholar 

  • Li J, Zou C, Xu J, Ji X, Niu X, Yang J, Huang X, Zhang KQ (2015) Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Annu Rev Phytopathol 53:67–95

    CAS  PubMed  Google Scholar 

  • Lilley C, Davis L, Urwin P (2012) RNA interference in plant parasitic nematodes: a summary of the current status. Parasitology 139:630–640. https://doi.org/10.1017/S0031182011002071

    Article  CAS  PubMed  Google Scholar 

  • Lima FSO, Santos GR, Nogueira SR, Santos PRR, Correa VR (2015) Population dynamics of the root lesion nematode Pratylenchus brachyurus in soybean fields in Tocantins state and its effect to soybean yield. Nematropica 45(2):170–177

    Google Scholar 

  • Lòpez-Llorca LV, Macia-Vicente JG, Jansson H-B (2008) Mode of action and interactions of nematophagous fungi. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes. Springer, Dordrecht

    Google Scholar 

  • Lòpez-Llorca LV, Claughe RD (1990) Appressoria of the nematophagous fungus Verticillium suchlasporium. Micron Microscopia Acta 21:125–130

    Google Scholar 

  • Lòpez-Llorca LV, Robertson WM (1992) Immunocytochemical localization of a 32-kDa protease from the nematophagous fungus Verticillium suchlasporium in infected nematode eggs. Exp Mycol 16:261–267

    Google Scholar 

  • Luna JM, House GJ (1990) Pest management in sustainable agricultural systems. In: Edwards CA, Lal R, Madden P, Miller RH, House G (eds) Miller Sustainable Agricultural Systems. Soil Water Conservation Society, Ankeny, IA, p 696

    Google Scholar 

  • Ma H, Bertsch PM, Glenn TC, Kabengi NJ, Williams PL (2009) Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem 28(6):1324–1330

    CAS  PubMed  Google Scholar 

  • Mackenzie CD, Behan-Braman A, Hauptman J, Geary T (2017) Assessing the viability and degeneration of the medically important filarial nematodes. In: Nematology-concepts, diagnosis and control. IntechOpen

    Google Scholar 

  • Madamba CP, Camaya EN, Zenarosa DB, Yater HM (1999) Screening soil bacteria for potential biocontrol agents against the root-knot nematode, Meloidogyne spp. Philippine Agric 82:113–122

    Google Scholar 

  • Maggenti A (1981) General nematology, 1st edn. Springer-Verlag, New York, p 372. https://doi.org/10.1007/978-1-4612-5938-1

    Book  Google Scholar 

  • Maqbool MA (1988) Present status of research on plant parasitic nematodes in cereals and food and forage legumes in Pakistan. In: Saxena MC, Sikora RA, Srivastava JP (eds) Nematodes parasitic to cereals and legumes in temperate semi-arid regions. Aleppo, Syria, ICARDA, pp 173–180

    Google Scholar 

  • Marroquin LD, Elyassnia D, Griffitts JS, Feitelson JS, Aroian RV (2000) Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics 155:1693–1699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marull J, Pinochet J, Rodrıguez-Kabana R (1997) Agricultural and municipal compost residues for control of root-knot nematodes in tomato and pepper. Compost Sci Util 5:6–15

    Google Scholar 

  • Masler EP (2002) A polyclonal antiserum that recognizes the major female-specific proteins from the soybean cyst nematode Heterodera glycines. Int J Nematol 12:119–124

    Google Scholar 

  • Mattiucci S, Nascetti G (2008) Chapter 2: advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host—parasite co-evolutionary processes. In: Rollinson D, Hay SI (eds) Advances in parasitology. Academic Press, London, pp 47–148

    Google Scholar 

  • McGawley EC (1986) Influence of crop rotation on nematode community structure. J Nematol 18:620

    Google Scholar 

  • McKenry MV (1987) Control strategies in high-value crops. In: Brown RH, Kerry BR (eds) Principles and practice of nematode control in crops. Academic Press, Sydney, Australia, pp 330–349

    Google Scholar 

  • McSorley R, Duncan LW (1995) Economic thresholds and nematode management. Adv Plant Pathol 11:147–170

    Google Scholar 

  • McSorley R, Gallaher RN (1995) Effect of yard waste compost on plant-parasitic nematode densities in vegetable crops. Suppl J Nematol 27:545–549

    CAS  Google Scholar 

  • McSorley R, Gallaher RN (1997) Effect of compost and maize cultivars on plant-parasitic nematodes. J Nematol 29:731–736

    CAS  PubMed  PubMed Central  Google Scholar 

  • McSorley R, Wang RH, Kokalis-Burelle N, Church G (2006) Effects of soil type and steam on nematode biological control potential of the rhizosphere community. Nematropica 36:197–214

    Google Scholar 

  • McSorley R, Wang RH, Kokalis-Burelle N, Church G (2008) Suppression of root-knot nematodes in natural and agricultural soils. Appl Soil Ecol 39:291–298

    Google Scholar 

  • Meadows I, Averre C, Duncan H, Baker K (2018) Control of root-knot nematodes in the home vegetable garden. NC State Extension Publications

    Google Scholar 

  • Meagher JW (1972) Cereal cyst nematode (Heterodera avenae Woll). Studies on ecology and content in Victoria. Technical Bulletin 24, Department of Agriculture, Victoria, Australia, pp 50

    Google Scholar 

  • Meena KS, Sivakumar M, Jonathan EI, Devrajan K, Boopathi T (2010) Management of Meloidogyne incognita in tomato through dry powder and aqueous extracts of Tagetes erecta cv. Indian yellow. Pestology 34:28–30

    Google Scholar 

  • Mekete T, Dababat A, Sekora N, Akyazi F, Abebe E (2012) Identification key for agriculturally important plant-parasitic nematodes prepared for the international nematode diagnosis and identification course 2012—a manual for nematology. CIMMYT, Mexico, DF

    Google Scholar 

  • Mena J, Pimentel E (2002) Mechanism of action of Corynebacterium pauronetabolum strain C-924 on nematodes. Nematology 4:287

    Google Scholar 

  • Meyer SLF (2003) United States Department of Agriculture—Agricultural Research Service research programs on microbes for management of plant-parasitic nematodes. Pest Manag Sci 59:665–670

    CAS  PubMed  Google Scholar 

  • Miller L (1986) Economic importance of cyst nematodes in North America. In: Lamberti F, Taylor CE (eds) Cyst nematodes. Plenum Press, New York, pp 373–385

    Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319. https://doi.org/10.1105/tpc.10.8.1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitkowski NA, Abawi GS (2003) Root-knot nematodes. The Plant Health Instructor. https://www.apsnet.org/edcenter/disandpath/nematode/pdlessons/Pages/RootknotNematode.aspx. Accessed 11 Apr 2019

  • Mojtahedi H, Santo GS, Wilson JH, Hang AN (1993) Managing Meloidogyne chitwoodi on potato with rapeseed and green manure. Plant Dis 77:42–46

    Google Scholar 

  • Mokabli A, Valette S, Gauthier J-P, Rivoal R (2001) Influence of temperature on the hatch of Heterodera avenae Woll. populations from Algeria. Nematology 3(2):171–178

    Google Scholar 

  • Mokrini F, Janati S, Houari A, Essarioui A, Bouharroud R, Mimouni A (2018) Management of plant parasitic nematodes by means of organic amendment. Rev Mar Sci Agron Vét 6(3):337–344

    Google Scholar 

  • Moosavi MR, Zare R (2011) Fungi as biological control agents of plant-parasitic nematodes. Plant Defense: Biol Control:67–107. https://doi.org/10.1007/978-94-007-1933-0_4

  • Moosavi MR (2012) Nematicidal effect of some herbal powders and their aqueous extracts against Meloidogyne javanica. Nematropica 42:48–56

    Google Scholar 

  • Moosavi MR, Zare R, Zamanizadeh HR, Fatemy S (2010) Pathogenicity of Pochonia species on eggs of Meloidogyne javanica. J Invertebr Pathol 104:125–133

    PubMed  Google Scholar 

  • Morgan-Jones G, Godoy G, Rodriguez-Kabana R (1981) Verticillium chlamydosporium fungal parasite of Meloidogyne arenaria females. Nematropica 11:115–119

    Google Scholar 

  • Murslain M, Javed N, Khan SA, Khan HU, Abbas H, Munawar M (2014) Efficacy of moringa leaves and Trichoderma harzianum on the invasion and development of Meloidogyne javanica. Pak J Phytopathol 46(3):827–832

    Google Scholar 

  • Nassar AM (2016) Effectiveness of silver nano-particles of extracts of Urtica urens (Urticaceae) against root-knot nematode Meloidogyne incognita. Asian J Nematol 5(1):14–19

    Google Scholar 

  • Neeraj SG, Kumar A, Ram S, Kumar V (2017) Evaluation of nematicidal activity of ethanolic extracts of medicinal plants to Meloidogyne incognita (Kofoid and White) Chitwood under lab conditions. Int J Pure Appl Biosci 5(1):827–831. https://doi.org/10.18782/2320-7051.2525

    Article  Google Scholar 

  • Nicol JM (2002) Important nematode pests. Bread Wheat:345–366

    Google Scholar 

  • Nicol JM (1996) The distribution, pathogenicity and population dynamics of Pratylencus thornei (Sher and Allen, 1954) on wheat in South Australia. Ph.D. thesis, The University of Adelaide, Adelaide, Australia

    Google Scholar 

  • Noe JP, Sasser JN, Imbriani JL (1991) Maximizing the potential of cropping systems for nematode management. J Nematol 23:353–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ntalli NG, Caboni P (2012) Botanical nematicides: a review. J Agric Food Chem 60:9929–9940

    CAS  PubMed  Google Scholar 

  • Nusbaum CJ, Ferris H (1973) The role of cropping systems in nematode population management. Annu Rev Phytopathol 11:423–440

    Google Scholar 

  • Oka Y, Ben-Daniel B, Cohen Y (2012) Nematicidal activity of the leaf powder and extracts of Myrtus communis against the root-knot nematode Meloidogyne javanica. Plant Pathol 61(6):1012–1020. https://doi.org/10.1111/j.1365-3059.2011.02587.x

    Article  Google Scholar 

  • Okada H, Harada H, Kadota I (2004) Application of diversity indices and ecological indices to evaluate nematode community changes after soil fumigation. Jap J Nematol 34:89–98

    Google Scholar 

  • Olabiyi TI, Akanbi WB, Adepoju IO (2007) Control of certain nematode pests with different organic manure on cowpea. Am-Eurasian J Agric Environ Sci 2:523–527

    Google Scholar 

  • Oliveira CMG, Monteiro AR, Blok VC (2011) Morphological and molecular diagnostics for plant parasitic nematodes: working together to get the identification done. Trop Plant Pathol 36(2):65–73

    Google Scholar 

  • Olsen MW (2000) Root-knot nematode. University of Arizona, Arizona Cooperative Extension, AZ1187 (November), 1–3

    Google Scholar 

  • Orion D, Amir J, Krikun J (1984) Field observations on Pratylenchus thornei and its effects on wheat under arid conditions. Rev Nematol 7:341–345

    Google Scholar 

  • Osaki N, Fukuchi T (2010) Biological activities and characteristics of a novel nematicide, Imicyafos (NEMAKICK_). Plant Prot 64:333–337

    Google Scholar 

  • Osei K, Gowen S, Pembroke B, Brandenburg R, Jordan D (2010) Potential of leguminous cover crops in management of a mixed population of root-knot nematodes (Meloidogyne spp.). J Nematol 42:173–178

    PubMed  PubMed Central  Google Scholar 

  • Paix A, Folkmann A, Seydoux G (2017) Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans. Methods 121–122:86–93

    PubMed  PubMed Central  Google Scholar 

  • Pavaraj M, Bakavathiappan G, Baskaran S (2012) Evaluation of some plant extracts for their nematicidal properties against root-knot nematode, Meloidogyne incognita. J Biopest 5:106–110

    Google Scholar 

  • Peng D, Nicol JM, Li H, Hou S, Li H, Chen S, Riley IT (2009) Current knowledge of cereal cyst nematode (Heterodera avenae) on wheat in China. Cereal cyst nematodes: status, research and outlook, pp 29–34

    Google Scholar 

  • Perera MR, Vanstone VA, Jones MG (2005) A novel approach to identify plant parasitic nematodes using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 19(11):1454–1460

    CAS  PubMed  Google Scholar 

  • Pluskota A, Horzowski E, Bossinger O, von Mikecz A (2009) In Caenorhabditis elegans nanoparticle-biointeractions become transparent: silica-nanoparticles induce reproductive senescence. PLoS One 4:1–9

    Google Scholar 

  • Poswal MAT, Akpa AD (1991) Current trends in the use of traditional and organic methods for the control of crop pests and diseases in Nigeria. Trop Pest Manag 37:329–333

    Google Scholar 

  • Powers T, Harris T, Higgins R, Mullin P, Powers K (2018) Discovery and identification of Meloidogyne species using COI DNA barcoding. J Nematol 50(3):399–412

    PubMed  PubMed Central  Google Scholar 

  • Prot J-C, Soriano IR, Matias DM, Savary S (1992) Use of green manure crops in control of Hirschmanniella mucronata and H. oryzae in irrigated rice. J Nematol 24:127–132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman MM, Mian IH (2010) Isolation and identification of ten genera of plant parasitic nematodes. Bangladesh J Sci Industrial Res 45(3):267–270

    Google Scholar 

  • Ralmi NHAA, Khandaker MM, Mat N (2016) Occurrence and control of root knot nematode in crops: a review. Aust J Crop Sci 11(12):1649

    Google Scholar 

  • Raymundo SA (1985) Cropping systems research and root-knot nematode control. In: Sasser JN, Carter CC (eds) An advanced treatise on Meloidogyne. Vol I. Biology and control. N. C. State Univ. Graphics, Raleigh, pp 277–281

    Google Scholar 

  • Renco M, Sasanelli N, Šalamun P (2009) The effect of two compost soil amendments based on municipal green and penicillin production wastes, on plant parasitic nematodes. Helminthologia 46(3):190–197. https://doi.org/10.2478/s11687-009-0035-6

    Article  Google Scholar 

  • Rich JR, Dunn RA, Noling JW (2004) Nematicides: past and present uses. In: Chen Z, Chen S, Dickson DW (eds) Nematology advances and perspectives, Vol. 2. Nematode management and utilization. CABI Publishing, Wallingford, UK, pp 1179–1200

    Google Scholar 

  • Roberts PA (1993) The future of nematology: integration of new and improved management strategies. J Nematol 25:383–394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts PA, VanGundy SD, McKinney HE (1981) Effects of soil temperature and planting date of wheat on Meloidogyne incognita reproduction. J Nematol 13:338–344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson AF (2004) Nematode behavior and migrations through soil and host tissue. In: Chen ZX, Chen SY, Dickson DW (eds) Nematology advances and perspectives: Vol. I nematode morphology, physiology, and ecology. CAB International, Oxfordshire, UK, pp 330–405

    Google Scholar 

  • Rocha TL, Soll CB, Boughton BA, Silva TS, Oldach K, Alexandre AP, Callahan FDL, Sheedy J, Silveira ER, Carneiro RMDG, Silva LP, Polez VLP, Pelegrini PB, Bacic A, Grossi-de-Sa MF, Roessner U (2017) Prospection and identification of nematotoxic compounds from Canavalia ensiformis seeds effective in the control of the root knot nematode Meloidogyne incognita. Biotechnol Res Innov 1(1):87–100

    Google Scholar 

  • Rodriguez-Kabana R, Morgan-Jones G (1987) Biological control of nematodes: soil amendments and microbial antagonists. Plant and Soil 100:237–247

    Google Scholar 

  • Rodriguez-Kabana R (1986) Organic and inorganic nitrogen amendments to soil as nematode suppressants. J Nematol 18:129–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roe SA (1983) John Turberville Needham and the generation of living organisms. Isis 74(2):159–184. http://www.jstor.org/stable/233101. Accessed 10 Mar 2019

    CAS  PubMed  Google Scholar 

  • Roeber F, Jex AR, Gasser RB (2013) Next-generation molecular-diagnostic tools for gastrointestinal nematodes of livestock, with an emphasis on small ruminants: a turning point. Adv Parasitol 83:267–333

    PubMed  PubMed Central  Google Scholar 

  • Roh JY, Park YK, Park K, Choi J (2010) Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Pharmacol 29:167–172

    CAS  PubMed  Google Scholar 

  • Rosso MN, Jones JT, Abad P (2009) RNAi and functional genomics in plant parasitic nematodes. Annu Rev Phytopathol 47(1):207–232

    CAS  PubMed  Google Scholar 

  • Roy AK (1976) Effect of decaffeinated tea waste and water hyacinth compost on the control of Meloidogyne graminicola on rice. Indian J Nematol 6:73–77

    Google Scholar 

  • Saeki Y, Kawano E, Yamashita C, Akao S, Nagatomo Y (2003) Detection of plant parasitic nematodes, Meloidogyne incognita and Pratylenchus coffeae by multiplex PCR using specific primers. Soil Sci Plant Nutr 49(2):291–295. https://doi.org/10.1080/00380768.2003.10410010

    Article  CAS  Google Scholar 

  • Salim H, Ali A, Abdalbaki A, Eshak H, Khamees K, Reski B (2016) Nematicidal activity of plant extracts against the root-knot nematode Meloidogyne sp. on tomato plants. J Biol Agric Healthcare 6(20):73–76

    Google Scholar 

  • Samaliev HY, Andreoglou FI, Elawad SA, Hague NGM, Gowen SR (2000) The nematicidal effects of the bacteria Pseudomonas oryzihabitans and Xenorhabdus nematophilus on the root-knot nematode Meloidogyne javanica. Nematology 2:507–514

    Google Scholar 

  • Sanchez-Moreno S, Ferris H (2007) Suppressive service of the soil food web: effects of environmental management. Agric Ecosyst Environ 119:75–87

    Google Scholar 

  • Sano Z (2005) Cultural control of the nematode damage. In: Noubunkyo (ed) Large encyclopedia of environmental conservation agriculture, Tokyo, pp. 281–316. doi: https://doi.org/10.1177/147447400501200114

  • Santo GS, O’Bannon JH, Finley AM, Golden AM (1980) Occurrence and host range of a new root-knot nematode (Meloidogyne chitwoodi) in the Pacific Northwest. Plant Dis 64:951–952

    Google Scholar 

  • Sasser JN (1980) Root-knot nematodes: a global menace to crop production. Plant Dis 64:36–45

    Google Scholar 

  • Sato E, Min YY, Shirakashi T, Wada S, Toyota K (2017) Detection of the root-lesion nematode, Pratylenchus penetrans (Cobb), in a nematode community using real-time PCR. Jap J Nematol 37:87–92

    Google Scholar 

  • Schneider SM, Ajwa HA, Trout TJ, Gao S (2008) Nematode control from shank- and drip-applied fumigant alternatives to methyl bromide. Hortic Sci 43(6):1826–1832

    Google Scholar 

  • Seinhorst JW (1956) Population studies on stem nematodes (Ditylenchus dipsaci). Nematologica 1:159–164

    Google Scholar 

  • Shapiro-Ilan DI, Hazir S, Lete L (2015) Viability and virulence of entomopathogenic nematodes exposed to ultraviolet radiation. J Nematol 47(3):184–189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SB, Swarup G (1984) Cyst forming nematodes of India, New Delhi. Indian Cosmo Publication 1:150

    Google Scholar 

  • Shield JA, Paul EA, Lowe WE, Parkinson D (1973) Turnover of microbial tissue under field conditions. Soil Biol Biochem 5:753–764

    Google Scholar 

  • Shukla A, Chand R (2018) Studies on the bio-efficacy of botanicals against rice root-knot nematode, Meloidogyne graminicola development. J Pharmacognosy Phytochem 7(6):1563–1565

    CAS  Google Scholar 

  • Siddiqi MR (1997) Techniques and methodologies for nematode disease diagnosis and nematode identification. FAO Plant Production and Protection Paper 144:21–44

    Google Scholar 

  • Siddiqui IA, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol 7:5646–5649

    Google Scholar 

  • Siddiqui IA, Shaukat SS (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite 2,4diacetylphloroglucinol. Soil Biol Biochem 35:1615–1623

    CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour Technol 69:167–179

    CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (1996) Biological control of plant parasitic nematodes by fungi: a review. Bioresour Technol 58:229–239

    CAS  Google Scholar 

  • Sikora R, Fernandez E (2005) Nematode parasites of vegetables. In: Luc M, Sikora R, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical. CABI, Wallingford, pp 319–392. https://doi.org/10.1079/9780851997278.0000

    Chapter  Google Scholar 

  • Sikora RA (1988) Plant parasitic nematodes of wheat and barley in temperature and temperate semi-arid regions - a comparative analysis. In: Saxena MC, Sikora RA, Srivastava JP (eds) Nematodes parasitic to cereals and legumes in temperate semi-arid regions. Aleppo, Syria, ICARDA, pp 46–48

    Google Scholar 

  • Singh S, Singh BK, Yadav SM, Gupta AK (2015) Applications of nanotechnology in agriculture and their role in disease management. Res J Nanosci Nanotechnol 5(1):1–5

    Google Scholar 

  • Singh R, Kumar U (2015) Assessment of nematode distribution and yield losses in vegetable crops of Western Uttar Pradesh in India. Int J Sci Res 4(5):2812–2816

    Google Scholar 

  • Sitaramaiah K (1990) Mechanisms of reduction of plant parasitic nematodes in soils amended with organic materials. In: Saxena SK, Khan MW, Rashid A, Khan RM (eds) Progress in plant nematology. CBS, Delhi, India, pp 263–295

    Google Scholar 

  • Slomczynska U, South MS, Bunkers GJ, Edgecomb D, Wyse-Pester D, Selness S, Ding Y, Christiansen J, Ediger K, Miller W, Charumilind P, Hartmann G, Williams J, Dimmic M, Shortt B, Haakenson W, Wideman A, Crawford M, Hresko M, James McCarter J (2015) Tioxazafen: a new broad-spectrum seed treatment nematicide. In: Discovery and synthesis of crop protection products; ACS symposium series. American Chemical Society, Washington, DC, pp 129–147

    Google Scholar 

  • Slomp L, Pereira PS, França SC, Zingaretti S, Oliveira BOR (2009) In vitro nematocidal effects of medicinal plants from São Paulo state, Brazil. Pharm Biol 47(3):230–235

    Google Scholar 

  • Sobczak M, Avrova A, Jupowicz J, Phillips MS, Ernst K, Kumar A (2005) Characterization of susceptibility and resistance responses to potato cyst nematode (Globodera spp.) infection of tomato lines in the absence and presence of the broad-spectrum nematode resistance Hero gene. Mol Plant-Microbe Interaction 18:158–168

    CAS  Google Scholar 

  • Spiegel Y, Cohn E, Galper S, Sharon E, Chet I (1991) Evaluation of a newly isolated bacterium, Pseudomonas chitinolytica sp. nov., for controlling the root-knot nematode Meloidogyne javanica. Biocontrol Sci Technol 1:115–125

    Google Scholar 

  • Stirling GR (1991) Biological Control of plant-parasitic nematodes: progress, problems, and prospects. CAB International, Wallingford, UK, p 282

    Google Scholar 

  • Stirling GR, Nicol J, Reay F (1999) Advisory services for nematode pests: operational guidelines. Rural Industries Research & Development Corporation, ACT, Australia. Available http://nematologists.org.au/aan-rirdc.pdf. Accessed 12 Feb 2019

  • Stork NE, Eggleton P (1992) Invertebrates as determinants and indicators of soil quality. Am J Altern Agric 7:38–47

    Google Scholar 

  • Sturhan D, Schneider R (1980) Hirsutella heteroderae, ein neuer nematodenparasitarer Pilz. Phytopathol Z 99:105–115

    Google Scholar 

  • Su L, Ruan Y, Yang X, Wang K, Li R, Shen Q (2015) Suppression on plant-parasitic nematodes using a soil fumigation strategy based on ammonium bicarbonate and its effects on the nematode community. Sci Rep 5:17597. https://doi.org/10.1038/srep17597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subbotin SA, Madani M, Krall E, Sturhan D, Moens M (2005) Molecular diagnostics, taxonomy, and phylogeny of the stem nematode Ditylenchus dipsaci species complex based on the sequences of the internal transcribed spacer-rDNA. Phytopathology 95(11):1308–1315

    CAS  PubMed  Google Scholar 

  • Sukul NC (1992) Plants antagonistic to plant parasitic nematodes. Indian J Life Sci 12:23–52

    Google Scholar 

  • Sundararaju P, Mustaffa MM, Kumar V, Cannayane I, Tanuja Priya B (2002) Effect of organic farming on plant-parasitic nematodes infesting banana cv. Karpuravalli. Curr Nematol 13:39–43

    Google Scholar 

  • Swarup G, Sosa-Moss C (1990) Nematode parasites of cereals. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture. Wallingford, CAB International, pp 109–136

    Google Scholar 

  • Taha EH, Abo-Shady NM (2016) Effect of silver nanoparticles on the mortality pathogenicity and reproductivity of entomopathogenic nematodes. Int J Zool Res 12(3–4):47–50

    CAS  Google Scholar 

  • Taiwo BA, Fawole B, Cole AOC (2015) Nematicidal potential of extracts from some selected plants against the root-knot nematode Meloidogyne incognita. Agrotechnology 4(2):62. https://doi.org/10.4172/2168-9881.S1.015

    Article  Google Scholar 

  • Taylor AL (2003) Nematocides and nematicides—a history. Nematropica 33(2):225–232

    Google Scholar 

  • Taylor SP, McKay A (1993) Sampling and extraction methods for Pratylenchus thornei and P. neglectus. In: Vanstone VA, Taylor SP, Nicol JM (eds) Proc. 9th biennial Australian plant pathology conference. Pratylenchus Workshop, Adelaide, Australia.

    Google Scholar 

  • Taylor SP, Vanstone VA, Ware AH, McKay AC, Szot D, Russ MH (1999) Measuring yield loss in cereals caused by root lesion nematodes (Pratylenchus neglectus and P. thornei) with and without nematicide. Aust J Agr Res 50(4):617–622

    CAS  Google Scholar 

  • Thakur RK, Dhirta B, Shirkot P (2018) Studies on effect of gold nanoparticles on Meloidogyne incognita and tomato plants growth and development. Ann Nanosci Nanotechnol 2(1):1–7. https://doi.org/10.1101/428144

    Article  CAS  Google Scholar 

  • Thiéry M, Mugniéry D (2000) Microsatellite loci in the phytoparasitic nematode Globodera. Genome 43:160–165

    PubMed  Google Scholar 

  • Thomason IJ, Caswell EP (1987) Principles of nematode control. In: Brown RH, Kerry BR (eds) Principles and practice of nematode control in crops. Academic Press, New York, pp 87–124

    Google Scholar 

  • Thompson JP, Clewett TG (1986) Research on root-lesion nematode. In: Queensland Wheat Research Institute Biennial Report 1982–1984, Qld Dept. Primary Industries, Qld. Govt., Queensland, Australia, Toowoomba, Queensland, Australia, Wheat Research Institute, pp 32–35

    Google Scholar 

  • Tikhonov VE, Lòpez-Llorca LV, Salinas J, Jansson HB (2002) Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genet Biol 35:67–78

    CAS  PubMed  Google Scholar 

  • Tomczak AF, Danan S, van Dijk T, Beyene A, Bouwman L, Overmars H, Bakker E (2009) A high-resolution map of the Grp1 locus on chromosome V of potato harbouring broad-spectrum resistance to the cyst nematode species Globodera pallida and Globodera rostochiensis. Theor Appl Genet 119(1):165–173

    Google Scholar 

  • Tripathi L, Babirye A, Roderick H, Tripathi JN, Changa C, Urwin PE, Tushemereirwe WK, Coyne D, Atkinson HJ (2015) Field resistance of transgenic plantain to nematodes has potential for future African food security. Sci Rep 5:8127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi PC, Barker KR (1986) Management of nematodes by cultural practices. Nematropica 16:213–236

    Google Scholar 

  • Trudgill DL, Phillips MS (1997) Nematode population dynamics, threshold levels and estimation of crop losses. http://www.fao.org/3/v9978e/v9978e07.htm. Accessed 14 Apr 2019

  • Tunlid A, Rosen S, Ek B, Rask L (1995) Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiology 140:1687–1695

    Google Scholar 

  • Tyler J (1933) The root-knot nematode. Berkeley, CA, USA, Circular No. 330, University of California College of Agriculture, Agricultural Experiment Station, p 33

    Google Scholar 

  • Tylka GL, Marett CC, Robertson AE (2015) Field experiments show effects of clariva™ seed treatment in 2014. Integrated Crop Management News

    Google Scholar 

  • Urwin PE, Lilley CJ, Atkinson HJ (2002) Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Mol Plant Microbe Interact 15:747–752

    CAS  PubMed  Google Scholar 

  • Urwin PE, Lilley CJ, Mcpherson MJ, Atkinson HJ (1997) Resistance to both cyst and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. Plant J 12:455–461. https://doi.org/10.1046/j.1365-313X.1997.12020455.x

    Article  CAS  PubMed  Google Scholar 

  • Urwin PE, Mcpherson MJ, Atkinson HJ (1998) Enhanced transgenic plant resistance to nematodes by dual proteinase inhibitor constructs. Planta 204:472–479. https://doi.org/10.1007/s004250050281

    Article  CAS  PubMed  Google Scholar 

  • Valentine TA, Randall E, Wypijewski K, Champman S, Jones J, Oparka KJ (2007) Delivery of macromolecules to plant parasitic nematodes using tobacco rattle virus vector. Plant Biotechnol J 5:827–834

    CAS  PubMed  Google Scholar 

  • van der Voort JR, Wolters P, Folkertsma R, Hutten R, Van Zandvoort P, Vinke H, Kanyuka K, Bendahmane A, Jacobsen E, Janssen R (1997) Mapping of the cyst nematode resistance locus Gpa2 in potato using a strategy based on comigrating AFLP markers. Theor Appl Genet 95(5-6):874–880

    Google Scholar 

  • van Doorn R, Szemes M, Bonants P, Kowalchuk GA, Salles JF, Ortenberg E, Schoen CD (2007) Quantitative multiplex detection of plant pathogens using a novel ligation probe-based system coupled with universal, high-throughput real-time PCR on OpenArrays™. BMC Genomics 8:276

    PubMed  PubMed Central  Google Scholar 

  • Van Gundy SD, Jose Gustavo Perez B, Stolzy LH, Thomason IJ (1974) A pest management approach to the control of Pratylenchus thornei on wheat in mexico. J Nematol 6:107–116

    PubMed  PubMed Central  Google Scholar 

  • Verdejo-Lucas S, Sorribas J, Puigdomenech P (1994) Yield losses caused by Meloidogyne javanica on lettuce and tomato in a plastic house. Invest Agrar Prod Prot Veg Suppl 2:395–400

    Google Scholar 

  • Viaene NM, Abawi GS (1998) Management of Meloidogyne hapla on lettuce in organic soil with sudangrass as a cover crop. Plant Dis 82(8):945–952

    PubMed  Google Scholar 

  • Vishnudasan D, Tripathi MN, Rao U, Khurana P (2005) Assessment of nematode resistance in wheat transgenic plants expressing potato proteinase inhibitor (PIN2) gene. Transgenic Res 14:665–675

    CAS  PubMed  Google Scholar 

  • Wada S, Toyota K (2008) Effect of three organophosphorous nematicides on non-target nematodes and soil microbial community. Microbes Environ 23:331–336

    PubMed  Google Scholar 

  • Wada S, Toyota K, Takada A (2011) Effects of the nematicide imicyafos on soil nematode community structure and damage to radish caused by Pratylenchus penetrans. J Nematol 43(1):1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang Y, Yang B, Hu X, Yu S (2001) Studies on relationships of Bursaphelenchus xylophilus and B. mucronatus by RAPD. Acta Phytopathol Sinica 31:225–229

    Google Scholar 

  • Wang B, Liu X, Wu W, Liu X, Li SH (2009) Purification, characterization, and gene cloning of an alkaline serine protease from a highly virulent strain of the nematode-endoparasitic fungus Hirsutella rhossiliensis. Microbiol Res 164:665–673

    CAS  PubMed  Google Scholar 

  • Wang KH, McSorley R, Marshall AH, Gallaher RN (2004) Nematode community changes associated with decomposition of Crotalaria juncea amendment in litterbags. Appl Soil Ecol 27:31–45

    Google Scholar 

  • Wang M, Yang JK, Zhang KQ (2006a) Characterization of an extracellular protease and its cDNA from the nematode-trapping fungus Monacrosporium microscaphoides. Can J Microbiol 52:130–139

    CAS  PubMed  Google Scholar 

  • Wang RB, Yang JK, Lin C, Zhang Y, Zhang KQ (2006b) Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Dactylella shizishanna. Lett Appl Microbiol 42:589–594

    CAS  PubMed  Google Scholar 

  • Ward JD (2015) Rapid and precise engineering of the Caenorhabditis elegans genome with lethal mutation co-conversion and inactivation of NHEJ repair. Genetics 199:363–377

    PubMed  Google Scholar 

  • Webb D, Baltazar B, Rao-Arelli A, Schupp J, Clayton K, Keim P, Beavis W (1995) Genetic mapping of soybean cyst nematode race-3 resistance loci in the soybean PI 437.654. Theor Appl Genet 91(4):574–581

    CAS  PubMed  Google Scholar 

  • Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Aroian RV (2003) Bacillus thuringiensis crystal proteins that target nematodes. PNAS 100:2760–2765

    CAS  PubMed  Google Scholar 

  • Weischer BA (1994) Where to go in phytonematode control? Phytoparasitica 22:95–99

    Google Scholar 

  • Weller DM (1988) Biological control of soil-borne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Google Scholar 

  • Westerdahl B, Giraud D, Etter S, Riddle LJ, Radewald JD, Anderson CA, Darso J (2003) Management options for Pratylenchus penetrans in Easter lily. J Nematol 35:443–449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehead AG (1998) Plant nematode control. CAB, Wallingford, UK

    Google Scholar 

  • Williams KJ, Fisher JM, Langridge P (1996) Development of a PCR-based allelespecific assay from an RFLP probe linked to resistance to cereal cyst nematode in wheat. Genome 39:798–801

    CAS  PubMed  Google Scholar 

  • Wiratno D, Taniwiryono H, den Berg V, Riksen JAG, Rietjens IMCM, Djiwanti SR, Kammenga JE, Murk AJ (2009) Nematicidal activity of plant extracts against the root knot nematode, Meloidogyne incognita. Open Nat Prod J 2:77–85

    Google Scholar 

  • Xiang N, Lawrence KS, Kloepper JW, Donald PA, McInroy JA, Zhang B (2017) Biological control of Heterodera glycines by spore- forming plant growth- promoting rhizobacteria (PGPR) on soybean. PLoS One 12(7):e0181201. https://doi.org/10.1371/journal.pone.0181201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaghoobi J, Kaloshian I, Wen Y, Williamson VM (1995) Mapping a new nematode resistance locus in Lycopersicon peruvianum. Theor Appl Genet 91:457–464

    CAS  PubMed  Google Scholar 

  • Ye W (2012) Development of prime time Real Time PCR for species identification of soybean cyst nematode (Heterodera glycines Ichinohe, 1952) in North Carolina. J Nematol 44(3):284–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye W, Zeng Y, Kerns J (2015) Molecular characterization and diagnosis of root-knot nematodes (Meloidogyne spp.) from Turfgrasses in North Carolina, USA. PLoS One 10(11):e0143556. https://doi.org/10.1371/journal.pone.0143556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youssef RM, Kim KH, Haroon SA, Matthews BF (2013) Posttranscriptional gene silencing of the gene encoding aldolase from soybean cyst nematode by transformed soybean roots. Exp Parasitol 134:266–274. https://doi.org/10.1016/j.exppara.2013.03.009

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Wang Y, Hu X, Bai W (1998) RAPD analysis of four most common Meloidogyne spp. Acta Phytopathol Sinica 28:359–365

    Google Scholar 

  • Zamanian M, Andersen EC (2016) Prospects and challenges of CRISPR/Cas genome editing for the study and control of neglected vector-borne nematode diseases. FEBS J 283(17):3204–3221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zasada IA, Halbrendt JM, Kokalis-Burelle N, LaMondia J, McKenry MV, Noling JW (2010) Managing nematodes without methyl bromide. Annual. Rev Phytopathol 48:311–328

    CAS  Google Scholar 

  • Zhang LY, Zhang YY, Chen RG, Zhang JH, Wang TT, Li HX, Ye ZB (2010) Ectopic expression of the tomato Mi-1 gene confers resistance to root knot nematodes in lettuce (Lactuca sativa). Plant Mol Biol Rep 28(2):204–211

    CAS  Google Scholar 

  • Zhao M, Mo M, Zhang Z (2004) Characterization of a serine protease and its full-length cDNA from the nematode-trapping fungus Arthrobotrys oligospora. Mycologia 96:16–22

    CAS  Google Scholar 

  • Zhou L, Wang J, Wang K, Xu J, Zhao J, Shan T, Luo C (2012) Secondary metabolites with antinematodal activity from higher plants. Stud Nat Prod Chem 37:67–114

    CAS  Google Scholar 

  • Zijlstra C, Donkers-Venne DTHM, Fargette M (2000) Identification of Meloidogyne incognita, M. javanica and M. arenaria using sequence characterised amplified region (SCAR) based PCR assays. Nematology 2:847–883

    CAS  Google Scholar 

  • Zuckerman BM, Jasson HB (1984) Nematode chemotaxis and possible mechanisms of host/prey recognition. Annu Rev Phytopathol 22:95–113

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Cassim Mohamed Zakeel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sivasubramaniam, N., Hariharan, G., Zakeel, M.C.M. (2020). Sustainable Management of Plant-Parasitic Nematodes: An Overview from Conventional Practices to Modern Techniques. In: Ansari, R., Rizvi, R., Mahmood, I. (eds) Management of Phytonematodes: Recent Advances and Future Challenges. Springer, Singapore. https://doi.org/10.1007/978-981-15-4087-5_16

Download citation

Publish with us

Policies and ethics