Skip to main content

Raised ICP and Brain Herniation

  • Chapter
  • First Online:
Book cover Acute Neuro Care

Abstract

A 28 Y/M, presented in emergency room with a severe traumatic head injury after being in a motorcycle accident without wearing a helmet. The physical examination revealed a Glasgow Coma Scale of 6, decerebrate posturing, pupils bilaterally fixed and 4 mm in size, and cerebral spinal fluid otorrhea on the right side. Computed tomography of the head showed left frontal and temporal subdural haemorrhage and underlying contusion with 8-mm midline shift, effacement of the suprasellar cisterns and effacement of the 3rdand 4th ventricles. Systemic examination revealed bradycardia, and hypertension with an initial blood pressure of 221/105 mm Hg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Welch K. The intracranial pressure in infants. J Neurosurg. 1980;52:693–9.

    Article  CAS  PubMed  Google Scholar 

  2. Castillo LR, Gopinath S, Robertson CS. Management of intracranial hypertension. Neurol Clin. 2008;26:521–41.

    Article  Google Scholar 

  3. Treggiari MM, Schutz N, Yanez ND, Romand J-A. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care. 2007;6:104–12.

    Article  PubMed  Google Scholar 

  4. Ropper AH. Hyperosmolar therapy for raised intracranial pressure. N Engl J Med. 2012;367:746–52.

    Article  CAS  PubMed  Google Scholar 

  5. Mayer SA, Chong JY. Critical care management of increased intracranial pressure. J Intensive Care Med. 2002;17:55–67.

    Article  Google Scholar 

  6. Nakagawa K, Smith WS. Evaluation and management of increased intracranial pressure. Continuum. 2011;17(5):1077–93.

    PubMed  Google Scholar 

  7. Rangel-Castilla L, Gasco J, Nauta HJ, et al. Cerebral pressure autoregulation in traumatic brain injury. Neurosurg Focus. 2008;25:E7.

    Article  PubMed  Google Scholar 

  8. Figali AA, Zwane E, Fieggen AG, et al. Pressure autoregulation, intracranial pressure, and brain tissue oxygenation in children with severe traumatic brain injury. J Neurosurg Pediatr. 2009;4:420–8.

    Article  Google Scholar 

  9. Eisenberg HM, Gary HE Jr, Aldrich EF, et al. Initial CT findings in 753 patients with severe head injury. A report from the NIH Traumatic Coma Data Bank. J Neurosurg. 1990;73:688–98.

    Article  CAS  PubMed  Google Scholar 

  10. Morgenstern L, Hemphill JC 3rd, Anderson C, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2010;41:2108–29.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Connolly EJ, Rabinstein AA, Carhuapoma JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2012;43:1711–37.

    Article  PubMed  Google Scholar 

  12. Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. J Neurotrauma. 2007;24(Suppl 1):S21–5.

    Article  PubMed  Google Scholar 

  13. Bhagat H, Mahajan S. Supratentorial Lesions. In: Prabhakar H, Mahajan C, Kapoor I, editors. Essentials of neuroanesthesia. 1st ed. New York: CRC Press; 2018. p. 541–53.

    Google Scholar 

  14. Caricato A, Conti G, Della CF, et al. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: the role of respiratory system compliance. J Trauma. 2005;58:571–6.

    Article  PubMed  Google Scholar 

  15. Joseph DK, Dutton RP, Aarabi B, et al. Decompressive laparotomy to treat intractable intracranial hypertension after traumatic brain injury. J Trauma. 2004;57:687–93.

    Article  PubMed  Google Scholar 

  16. Galicich JH, French LA, Melby JC. Use of dexamethasone in treatment of cerebral edema associated with brain tumors. J Lancet. 1961;81:46–53.

    CAS  PubMed  Google Scholar 

  17. Quartey GR, Johnston JA, Rozdilsky B. Decadron in the treatment of cerebral abscess: an experimental study. J Neurosurg. 1976;45:301–10.

    Article  CAS  PubMed  Google Scholar 

  18. Qureshi A, Wilson D, Traystman R. Treatment of elevated intracranial pressure in experimental intracerebral hemorrhage: comparison between mannitol and hypertonic saline. Neurosurgery. 1999;44(5):1055–63.

    Article  CAS  PubMed  Google Scholar 

  19. Francony G, Fauvage B, Falcon D, et al. Equimolar doses of mannitol and hypertonic saline in the treatment of increased intracranial pressure. Crit Care Med. 2008;36(3):795–800.

    Article  CAS  PubMed  Google Scholar 

  20. Battison C, Andrews PJ, Graham C, et al. Randomized, controlled trial on the effect of a 20% mannitol solution and a 7.5% saline/6% dextran solution on increased intracranial pressure after brain injury. Crit Car Med. 2005;33:196–202.

    Article  CAS  Google Scholar 

  21. Ichai C, Armando G, Orban JC, et al. Sodium lactate versus mannitol in the treatment of intracranial hypertensive episodes in severe traumatic brain-injured patients. Intensive Care Med. 2009;35:471–9.

    Article  CAS  PubMed  Google Scholar 

  22. Koenig MA, Bryan M, Lewin JL 3rd, Mirski MA, Geocadin RG, Stevens RD. Reversal of transtentorial herniation with hypertonic saline. Neurology. 2008;70:1023–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kerr EM, Marion D, Sereika MS, et al. The effect of cerebrospinal fluid drainage on cerebral perfusion in traumatic brain injured adults. J Neurosurg Anesthesiol. 2000;12:324–33.

    Article  CAS  PubMed  Google Scholar 

  24. Coles JP, Minhas PS, Fryer TD, et al. Effect of hyperventilation on cerebral blood flow in traumatic head injury: clinical relevance and monitoring correlates. Crit Care Med. 2002;30:1950–9.

    Article  CAS  PubMed  Google Scholar 

  25. Muizelaar JP, Marmarou A, Ward JD, et al. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg. 1991;75:731–9.

    Article  CAS  PubMed  Google Scholar 

  26. Eberle BM, Schnuriger B, Inaba K, Gruen JP, Demetriades D, Belzberg H. Decompressive craniectomy: surgical control of traumatic intracranial hypertension may improve outcome. Injury. 2010;41:894–8.

    Article  PubMed  Google Scholar 

  27. Johnson RD, Maartens NF, Teddy PJ. Decompressive craniectomy for malignant middle cerebral artery infarction: evidence and controversies. J Clin Neurosci. 2011;18:1018–22.

    Article  PubMed  Google Scholar 

  28. Kelly DF, Goodale DB, Williams J, et al. Propofol in the treatment of moderate and severe head injury: a randomized, prospective double-blinded pilot trial. J Neurosurg. 1999;90:1042–52.

    Article  CAS  PubMed  Google Scholar 

  29. Pfefferkorn T, Eppinger U, Linn J, et al. Long-term outcome after suboccipital decompressive craniectomy for malignant cerebellar infarction. Stroke. 2009;40:3045–50.

    Article  PubMed  Google Scholar 

  30. Raco A, Caroli E, Isidori A, Salvati M. Management of acute cerebellar infarction: one institution’s experience. Neurosurgery. 2003;53:1061–5.

    Article  PubMed  Google Scholar 

  31. Jiang JY, Xu W, Li WP, et al. Efficacy of standard trauma craniectomy for refractory intracranial hypertension with severe traumatic brain injury: a multicenter, prospective, randomized controlled study. J Neurotrauma. 2005;22:623–8.

    Article  PubMed  Google Scholar 

  32. Olivecrona M, Rodling-Wahlstrom M, Naredi S, et al. Effective ICP reduction by decompressive craniectomy in patients with severe traumatic brain injury treated by an ICP-targeted therapy. J Neurotrauma. 2007;24:927–35.

    Article  PubMed  Google Scholar 

  33. Taylor A, Butt W, Rosenfeld J, et al. A randomized trial of very early decompressive craniectomy in children with traumatic brain injury and sustained intracranial hypertension. Childs Nerv Syst. 2001;17:154–62.

    Article  CAS  PubMed  Google Scholar 

  34. Cooper DJ, Rosenfeld JV, Murray L, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364:1493–502.

    Article  CAS  PubMed  Google Scholar 

  35. Hofmeijer J, Kappelle LJ, Algra A, et al. Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After Middle Cerebral Artery infarction with Life-threatening Edema Trial [HAMLET]): a multicentre, open, randomised trial. Lancet Neurol. 2009;8:326–33.

    Article  PubMed  Google Scholar 

  36. Vahedi K, Hofmeijer J, Juettler E, et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol. 2007;6:215–22.

    Article  PubMed  Google Scholar 

  37. Brain Trauma Foundation. The use of barbiturates in the control of intracranial hypertension. J Neurotrauma. 1996;13:711–4.

    Article  Google Scholar 

  38. Eisenberg HM, Frankowski RF, Contant CF, et al. High-dose barbiturate control of elevated intracranial in patients with severe head injury. J Neurosurg. 1988;69:15–23.

    Article  CAS  PubMed  Google Scholar 

  39. Perez-Barcena J, Llompart-Pou JA, Homar J, et al. Pentobarbital versus thiopental in the treatment of refractory intracranial hypertension in patients with traumatic brain injury: a randomized controlled trial. Crit Care. 2008;12:R112.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jiang J, Yu M, Zhu C. Effect of long-term mild hypothermia therapy in patients with severe traumatic brain injury: 1-year follow-up review of 87 cases. J Neurosurg. 2000;93:546–9.

    Article  CAS  PubMed  Google Scholar 

  41. Liu WG, Qiu WS, Zhang Y, et al. Effects of selective brain cooling in patients with severe traumatic brain injury: a preliminary study. J Int Med Res. 2006;34:58–64.

    Article  CAS  PubMed  Google Scholar 

  42. Marion DW, Obrist WD, Carlier PM, et al. The use of moderate therapeutic hypothermia for patients with severe head injuries: a preliminary report. J Neurosurg. 1993;79:354–62.

    Article  CAS  PubMed  Google Scholar 

  43. Marion DW, Penrod LE, Kelsey SF, et al. Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med. 1997;336:540–6.

    Article  CAS  PubMed  Google Scholar 

  44. Qiu W, Zhang Y, Sheng H, et al. Effects of therapeutic mild hypothermia on patients with severe traumatic brain injury after craniotomy. J Crit Care. 2007;22:229–35.

    Article  PubMed  Google Scholar 

  45. Shiozaki T, Sugimoto H, Taneda M, et al. Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J Neurosurg. 1993;79:363–8.

    Article  CAS  PubMed  Google Scholar 

  46. Chang JJ, Youn TS, Benson D, et al. Physiologic and functional outcome correlates of brain tissue hypoxia in traumatic brain injury. Crit Care Med. 2009;37:283–90.

    Article  CAS  PubMed  Google Scholar 

  47. Longhi L, Pagan F, Valeriani V, et al. Monitoring brain tissue oxygen tension in brain-injured patients reveals hypoxic episodes in normal-appearing and in peri-focal tissue. Intensive Care Med. 2007;33:2136–42.

    Article  PubMed  Google Scholar 

  48. Chen HI, Stiefel MF, Oddo M, et al. Detection of cerebral compromise with multimodality monitoring in patients with subarachnoid hemorrhage. Neurosurgery. 2011;69:53–63.

    Article  PubMed  Google Scholar 

  49. Schmidt B, Czosnyka M, Raabe A, et al. Adaptive noninvasive assessment of intracranial pressure and cerebral autoregulation. Stroke. 2003;34:84–9.

    Article  PubMed  Google Scholar 

  50. Brady K, Joshi B, Zweifel C, et al. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke. 2010;41:1951–6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Multiple Choice Questions

Multiple Choice Questions

  1. 1.

    Which of the following statements is not true regarding raised intracranial pressure?

    1. (a).

      Normal values of ICP range from 10 to 15 mmHg in adults

    2. (b).

      Normal values of ICP range from 7 to 8 mmHg in full term infants

    3. (c).

      The values higher than 20–25 mmHg need to be treated

    4. (d).

      The values more than 40 mmHg can be immediate life-threatening

  2. 2.

    The following statements are true regarding signs and symptoms of raised intracranial pressure, except.

    1. (a).

      Cushing's triad includes: hypertension, bradycardia and irregular respiration

    2. (b).

      Subfalcine herniation may lead to contralateral leg weakness

    3. (c).

      Central transtentorial herniation may lead to Diabetes insipidus in late stages

    4. (d).

      Uncal herniation presents as decorticate and decerebrate posture and Cheyne-Stokes respiration

  3. 3.

    Which of the following is not a radiological finding of raised intracranial pressure

    1. (a).

      Loss of sulci-gyri and grey-white matter distinction

    2. (b).

      Effacement of lateral ventricles

    3. (c).

      Opening of perimesencephalic cisterns

    4. (d).

      Midline shift

  4. 4.

    Which of the following is true regarding intracranial pressure monitoring?

    1. (a).

      Subarachnoid bolt should be zeroed at the level of external auditory meatus

    2. (b).

      Intraparenchymal catheter is considered as gold standard technique

    3. (c).

      Intraparenchymal can be re-zeroed after insertion

    4. (d).

      Intraventricular catheter must be re-zeroed each time the level of the patient’s head is altered

  5. 5.

    All of the following can cause secondary brain damage, except.

    1. (a).

      Hypothermia

    2. (b).

      Hypoxia

    3. (c).

      Severe Hypocapnia

    4. (d).

      Hypovolemia

  6. 6.

    Which of the following statement is true regarding initial management of raised intracranial pressure

    1. (a).

      Adequate cerebral perfusion pressure should be maintained at first place

    2. (b).

      Positive end-expiratory pressure must be avoided as it increases intracranial pressure

    3. (c).

      Airway, breathing and circulation should be managed initially in all the cases prior to raised intracranial pressure

    4. (d).

      Glasgow Coma Scale of more than 8 is an indication of securing the airway

  7. 7.

    All of the following can impede the cerebrospinal fluid drainage, except.

    1. (a).

      Abdominal compartment syndrome

    2. (b).

      Tight cervical collar

    3. (c).

      30° head elevation

    4. (d).

      Hemothorax

  8. 8.

    Which of the fluids should not be used in initial resuscitation of patients with raised intracranial pressure

    1. (a).

      Plasma-lyte-A

    2. (b).

      25% Dextrose

    3. (c).

      Normal Saline

    4. (d).

      7.5% saline

  9. 9.

    Which of the following treatment modality in not included in tier-1?

    1. (a).

      Mannitol

    2. (b).

      Hypertonic saline

    3. (c).

      Hyperventilation

    4. (d).

      Hypothermia

  10. 10.

    Following are true about hypothermia, except.

    1. (a).

      It reduces cerebral metabolism beyond the isoelectrical activity

    2. (b).

      There may be rebound severe intracranial hypertension during rewarming

    3. (c).

      Moderate to severe hypothermia is beneficial in reducing intracranial pressure

    4. (d).

      There is a risk of severe dyselectrolytemia during rewarming phase

Answers: 1. (b), 2. (d), 3. (c), 4. (d), 5. (a), 6. (c), 7. (c), 8. (b), 9. (d), 10. (c)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jangra, K., Bhagat, H., Panda, N. (2020). Raised ICP and Brain Herniation. In: Bidkar, P., Vanamoorthy, P. (eds) Acute Neuro Care. Springer, Singapore. https://doi.org/10.1007/978-981-15-4071-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4071-4_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4070-7

  • Online ISBN: 978-981-15-4071-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics