Thermo-Responsive Phosphorescence Control Mediated by Molecular Rotation and Aurophilic Interactions in Amphidynamic Crystals of Phosphine-Gold(I) Complex

Part of the Springer Theses book series (Springer Theses)


Here a structural design aimed at the control of phosphorescence emission as the result of changes in molecular rotation in a crystalline material is presented. The proposed strategy includes the use of aurophilic interactions, both as a crystal engineering tool and as a sensitive emission probe, and the use of a dumbbell-shaped architecture intended to create a low packing density region that permits the rotation of a central phenylene.


  1. 1.
    (a) Yan D, Evans DG (2014) Molecular crystalline materials with tunable luminescent properties: from polymorphs to multi-component solids. Mater Horiz 1:46–57. (b) Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN (1999) Electroluminescence in conjugated polymers. Nature 397:121–128. (c) Mutai T, Satou H, Araki K (2005) Reproducible on–off switching of solid-state luminescence by controlling molecular packing through heat-mode interconversion. Nat Mater 4:685–687. (d) Sagara Y, Yamane S, Mitani M, Weder C, Kato T (2016) Mechanoresponsive luminescent molecular assemblies: an emerging class of materials. Adv Mater 28:1073–1095Google Scholar
  2. 2.
    Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388CrossRefGoogle Scholar
  3. 3.
    (a) Shustova NB, McCarthy BD, Dincă M (2011) Turn-on fluorescence in tetraphenylethylene-based metal–organic frameworks: an alternative to aggregation-induced emission. J Am Chem Soc 133:20126–20129. (b) Shustova NB, Ong T-C, Cozzolino AF, Michalis VK, Griffin RG, Dincă M (2012) Phenyl ring dynamics in a tetraphenylethylene-bridged metal–organic framework: implications for the mechanism of aggregation-induced emission. J Am Chem Soc 134:15061. (c) Hughs M, Jimenez M, Khan SI, Garcia-Garibay MA (2013) Synthesis, rotational dynamics, and photophysical characterization of a crystalline linearly conjugated phenyleneethynylene molecular dirotor. J Org Chem 78:5293–5302Google Scholar
  4. 4.
    (a) Vogelsberg CS, Garcia-Garibay MA (2012) Crystalline molecular machines: function, phase order, dimensionality, and composition. Chem Soc Rev 41:1892–1910. (b) Khuong TAV, Nuñez JE, Godinez CE, Garcia-Garibay MA (2006) Crystalline molecular machines:  a quest toward solid-state dynamics and function. Acc Chem Res 39:413–422. (c) Horansky RD, Clarke LI, Winston EB, Price JC, Karlen SD, Jarowski PD, Santillan R, Garcia-Garibay MA (2006) Dipolar rotor-rotor interactions in a difluorobenzene molecular rotor crystal. Phys Rev B 74:054306. (d) Shima T, Hampel F, Gladysz JA (2004) Molecular gyroscopes: {Fe(CO)3} and {Fe(CO)2(NO)}+ rotators encased in three-spoke stators; facile assembly by alkene metatheses. Angew Chem Int Ed 43:5537–5540. (e) Lang GM, Shima T, Wang L, Cluff KJ, Skopek K, Hampel F, Blümel J, Gladysz JA (2016) Gyroscope-like complexes based on dibridgehead diphosphine cages that are accessed by three-fold intramolecular ring closing metatheses and encase Fe(CO)3, Fe(CO)2(NO)+, and Fe(CO)3(H)+ rotators. J Am Chem Soc 138:7649–7663. (f) Setaka W, Yamaguchi K (2012) A molecular balloon: expansion of a molecular gyrotop cage due to rotation of the phenylene rotor. J Am Chem Soc 134:12458–12461. (g) Setaka W, Yamaguchi K (2013) Order–disorder transition of dipolar rotor in a crystalline molecular gyrotop and its optical change. J Am Chem Soc 135:14560–14563. (h) Akutagawa T, Koshinaka H, Sato D, Takeda S, Noro S-I, Takahashi H, Kumai R, Tokura Y, Nakamura T (2009) Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators. Nat Mater 8:342–347. (i) Yao ZS, Yamamoto K, Cai HL, Takahashi K, Sato O (2016) Above room temperature organic ferroelectrics: diprotonated 1,4-diazabicyclo[2.2.2]octane shifts between two 2-chlorobenzoates. J Am Chem Soc 138:12005–12008Google Scholar
  5. 5.
    (a) Dominguez Z, Khuong TAV, Sanrame CN, Dang H, Nuñez JE, Garcia-Garibay MA (2003) Molecular compasses and gyroscopes with polar rotors:  synthesis and characterization of crystalline forms. J Am Chem Soc 125:8827–8837. (b) Dominguez Z, Dang H, Strouse MJ, Garcia-Garibay MA (2002) Molecular “compasses” and “gyroscopes”. I. Expedient synthesis and solid state dynamics of an open rotor with a bis(triarylmethyl) frame. J Am Chem Soc 124:2398–2399. (c) Godinez CE, Zepeda G, Garcia-Garibay MA (2002) Molecular compasses and gyroscopes. II. Synthesis and characterization of molecular rotors with axially substituted bis[2-(9-triptycyl)ethynyl]arenes. J Am Chem Soc 124:4701–4707. (d) Jarowski PD, Houk KN, Garcia-Garibay MA (2007) Importance of correlated motions on the low barrier rotational potentials of crystalline molecular gyroscopes. J Am Chem Soc 129:3110–3117Google Scholar
  6. 6.
    Jobbaǵy C, Deaḱ A (2014) Stimuli-responsive dynamic gold complexes. Eur J Inorg Chem 2014:4434–4449Google Scholar
  7. 7.
    (a) Pyykkö P (2004) Theoretical chemistry of gold. Angew Chem Int Ed 43:4412–4456. (b) Katz MJ, Sakai K, Leznoff DB (2008) The use of aurophilic and other metal–metal interactions as crystal engineering design elements to increase structural dimensionality. Chem Soc Rev 37:1884–1895. (c) Schmidbaur H, Schier A (2008) A briefing on aurophilicity. Chem Soc Rev 37:1931–1951. (d) Laguna A (2008) Modern supramolecular gold chemistry. Wiley, Weinheim, Germany. (e) Chen Y, Cheng G, Li K, Shelar DP, Lu W, Che C-M (2014) Phosphorescent polymeric nanomaterials with metallophilic d10···d10 interactions self-assembled from [Au(NHC)2]+ and [M(CN)2]. Chem Sci 5:1348–1353. (f) Ito H, Muromoto M, Kurenuma S, Ishizaka S, Kitamura N, Sato H, Seki T (2013) Mechanical stimulation and solid seeding trigger single-crystal-to-single-crystal molecular domino transformations. Nat Commun 4:2009Google Scholar
  8. 8.
    Zalesskiy SS, Sedykh AE, Kashin AS, Ananikov VP (2013) Efficient general procedure to access a diversity of gold(0) particles and gold(I) phosphine complexes from a simple HAuCl4 source. Localization of homogeneous/heterogeneous system’s interface and field-emission scanning electron microscopy study. J Am Chem Soc 135:3550–3559 CrossRefGoogle Scholar
  9. 9.
    Macho V, Brombacher L, Spiess HW (2001) The NMR-WEBLAB: an internet approach to NMR lineshape analysis. Appl Magn Reson 20:405–432CrossRefGoogle Scholar
  10. 10.
    (a) Emmert LA, Choi W, Marshal JA, Yang Y, Meyer LA, Brozic JA (2003) The excited-state symmetry characteristics of platinum phenylacetylene compounds. J Phys Chem A 107:11340–11346. (b) Chao HY, Lu W, Li Y, Chan MCW, Che C-M, Cheung K-K, Zhu N (2002) Organic triplet emissions of arylacetylide moieties harnessed through coordination to [Au(PCy3)]+. Effect of molecular structure upon photoluminescent properties. J Am Chem Soc 124:14696–14706Google Scholar
  11. 11.
    Wan S, Lu W (2017) Reversible photoactivated phosphorescence of gold(I) arylethynyl complexes in aerated DMSO solutions and gels. Angew Chem Int Ed 56:1784–1788CrossRefGoogle Scholar
  12. 12.
    Levitus M, Zepeda G, Dang H, Godinez C, Khuong TAV, Schmieder K, Garcia-Garibay MA (2001) Steps to demarcate the effects of chromophore aggregation and planarization in poly(phenyleneethynylene)s. 2. The photophysics of 1,4-diethynyl-2-fluorobenzene in solution and in crystals. J Org Chem 66:3188–3195CrossRefGoogle Scholar
  13. 13.
    (a) Levitus M, Schmieder K, Ricks H, Shimize KD, Bunz UHF, Garcia-Garibay MA (2001) Steps to demarcate the effects of chromophore aggregation and planarization in poly(phenyleneethynylene)s. 1. Rotationally interrupted conjugation in the excited states of 1,4-bis(phenylethynyl)benzene. J Am Chem Soc 123:4259–4265. (b) Levitus M, Garcia-Garibay MA (2000) Polarized electronic spectroscopy and photophysical properties of 9,10-bis(phenylethynyl)anthracene. J Phys Chem A 104:8632–8637Google Scholar
  14. 14.
    Krämer M, Bunz UHF, Dreuw A (2017) Comprehensive look at the photochemistry of tolane. J Phys Chem A 121:946–953CrossRefGoogle Scholar
  15. 15.
    Cardolaccia T, Li Y, Schanze KS (2008) Phosphorescent platinum acetylide organogelators. J Am Chem Soc 130:2535–2545CrossRefGoogle Scholar
  16. 16.
    Yang J-S, Yan JL, Liau K-L, Tsai HHG, Hwang C-YJ (2009) Substituent effect on the ground- and excited-state torsional motions of pentiptycene-derived 1,4-bis(phenylethynyl)benzenes. J Photochem Photobiol A: Chem 207:38–46CrossRefGoogle Scholar
  17. 17.
    Wang L, Li Y, Zhang Y, He H, Zhang J (2015) Spectrochim Acta Mol Biomol Spectrosc 2015(137):259CrossRefGoogle Scholar
  18. 18.
    Gardinier JR, Pellechia PJ, Smith MD (2005) Ionic rotors. preparation, structure, and dynamic solid-state 2D NMR study of the 1,4-diethynylbenzenebis(triphenylborate) dianion. J Am Chem Soc 127:12448–12449CrossRefGoogle Scholar
  19. 19.
    Xia WS, Schmehl RH, Li CJ (2000) A fluorescent 18-crown-6 based luminescence sensor for lanthanide ions. Tetrahedron 56:7045–7049CrossRefGoogle Scholar
  20. 20.
    Sheldrick GM (2013) SHELXL-2013. Program for the refinement of crystal structures. University of Göttingen, Göttingen, GermanyGoogle Scholar
  21. 21.
    Frisch MJ et al (2009) Gaussian 09 revision C.01. Gaussian Inc, Wallingford, CTGoogle Scholar
  22. 22.
    Spartan’10. Wavefunction, Inc, Irvine, CAGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Graduate School of Chemical Science and EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations