Advertisement

Mechanical-Stimulation-Triggered and Solvent-Vapor-Induced Reverse Single-Crystal-to-Single-Crystal Phase Transitions with Alterations of the Luminescence Color

Chapter
  • 164 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Herein, the first example of reversible change of the luminescence based on two SCSC phase transitions via mechanical cutting and solvent-vapor adsorption is described. Crystallization of a gold(I) complex that bears CF3 and biaryl moieties from CH2Cl2/MeOH afforded a green-emitting single crystal packed in a polar space group (Pna21). The green-emitting single crystals included MeOH molecules. Upon cutting the crystal under MeOH vapor at 22 °C, the green-emitting single crystal spontaneously changed into a centrosymmetric orange-emitting single crystal (\(P\bar{1}\)) under concomitant release of MeOH. Remarkably, the initial green-emitting crystal could be recovered from the orange-emitting crystal by a solvent-induced SCSC transition under saturated MeOH vapor. The combination of two different types of SCSC phase transitions enables the reversible structural and photoluminescent alternations.

References

  1. 1.
    (a) Malwitz MA, Lim SH, White-Morris RL, Pham DM, Olmstead MM, Balch AL (2012) Crystallization and interconversions of vapor-sensitive, luminescent polymorphs of [(C6H11NC)2AuI](AsF6) and [(C6H11NC)2AuI](PF6). J Am Chem Soc 134:10885–10893. (b) Kiri P, Hyett G, Binions R (2010) Solid state thermochromic materials. Adv Mat Lett 1:86–105. (c) Wenger OS (2013) Vapochromism in organometallic and coordination complexes: chemical sensors for volatile organic compounds. Chem Rev 113:3686–3733. (d) Ciardelli F, Ruggeri G, Pucci A (2013) Dye-containing polymers: methods for preparation of mechanochromic materials. Chem Soc Rev 42:857–870. (e) Sagara Y, Kato T (2009) Mechanically induced luminescence changes in molecular assemblies. Nat Chem 1:605–610. (f) Balch AL (2009) Dynamic crystals: visually detected mechanochemical changes in the luminescence of gold and other transition-metal complexes. Angew Chem Int Ed 48:2641–2644. (g) Sagara Y, Yamane S, Mitani M, Weder C, Kato T (2016) Mechanoresponsive luminescent molecular assemblies: an emerging class of materials. Adv Mater 28:1073–1095Google Scholar
  2. 2.
    Park SK, Cho I, Gierschner J, Kim JH, Kim JH, Kwon JE, Kwon OK, Whang DR, Park J-H, An B-K, Park SY (2016) Stimuli-responsive reversible fluorescence switching in a crystalline donor-acceptor mixture film: mixed stack charge-transfer emission versus segregated stack monomer emission. Angew Chem Int Ed 55:203–207CrossRefGoogle Scholar
  3. 3.
    (a) Mutai T, Satou H, Araki K (2005) Reproducible on–off switching of solid-state luminescence by controlling molecular packing through heat-mode interconversion. Nat Mater 4:685–687. (b) Li FF, Zhang L, Gong LL, Yan CS, Gao HY, Luo F (2017) Reversible photo/thermoswitchable dual-color fluorescence through single-crystal-to-single-crystal transformation. Dalton Trans 46:338–341. (c) Lim SH, Olmstead MM, Balch AL (2013) Inorganic topochemistry. Vapor-induced solid state transformations of luminescent, three-coordinate gold(I) complexes. Chem. Sci. 4:311–318. (d) Zeng M-H, Tan Y-X, He Y-P, Yin Z, Chen Q, Kurmoo M (2013) A porous 4-fold-interpenetrated chiral framework exhibiting vapochromism, single-crystal-to-single-crystal solvent exchange, gas sorption, and a poisoning effect. Inorg Chem 52:2353–2360. (e) Huang R-W, Wei Y-S, Dong X-Y, Wu X-H, Du C-X, Zang S-Q, Mak TCW (2017) Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal–organic framework. Nat Chem 9:689–697. (f) Lim SH, Olmstead MM, Balch AL (2011) Molecular accordion: vapoluminescence and molecular flexibility in the orange and green luminescent crystals of the dimer, Au2(μ-bis-(diphenylphosphino)ethane)2Br2. J Am Chem Soc 133:10229–10238. (g) Seki T, Sakurada K, Muromoto M, Ito H (2015) Photoinduced single-crystal-to-single-crystal phase transition and photosalient effect of a gold(I) isocyanide complex with shortening of intermolecular aurophilic bonds. Chem Sci 6:1491–1497Google Scholar
  4. 4.
    (a) Naumov P, Bharadwaj PK (2015) Single-crystal-to-single-crystal transformations. CrystEngComm 17:8775–8775. (b) Chaudhary A, Mohammad A, Mobin SM (2017) Recent advances in single-crystal-to-single-crystal transformation at the discrete molecular level. Cryst Growth Des 17:2893–2910Google Scholar
  5. 5.
    (a) Ito H, Muromoto M, Kurenuma S, Ishizaka S, Kitamura N, Sato H, Seki T (2013) Mechanical stimulation and solid seeding trigger single-crystal-to-single-crystal molecular domino transformations. Nat Commun 4:2009. Seki T, Sakurada K, Ito H (2013) Controlling mechano- and seeding-triggered single-crystal-to-single-crystal phase transition: molecular domino with a disconnection of aurophilic bonds. Angew Chem Int Ed 52:12828–12832. (c) Seki T, Sakurada K, Muromoto M, Seki S, Ito H (2016) Detailed investigation of the structural, thermal, and electronic properties of gold isocyanide complexes with mechano-triggered single-crystal-to-single-crystal phase transitions. Chem Eur J 22:1968–1978. (d) Liu G, Liu J, Liu Y, Tao X (2014) Oriented single-crystal-to-single-crystal phase transition with dramatic changes in the dimensions of crystals. J Am Chem Soc 136:590–593. (e) Karothu DP, Weston J, Desta IT, Naumov P (2016) Shape-memory and self-healing effects in mechanosalient molecular crystals. J Am Chem Soc 138:13298–13306Google Scholar
  6. 6.
    (a) Liu GF, Liu J, Ye X, Nie LN, Gu PY, Tao XT, Zhang QC (2017) Self-healing behavior in a thermo-mechanically responsive cocrystal during a reversible phase transition. Angew Chem Int Ed 56:198–202. (b) Takamizawa S, Miyamoto Y (2014) Superelastic organic crystals. Angew Chem Int Ed 53:6970–6973. (c) Takasaki Y, Takamizawa S (2015) Reversible crystal deformation of a single-crystal host of copper(II) 1-naphthoate-pyrazine through crystal phase transition induced by methanol vapor sorption. Chem Commun 51:5024–5027. (d) Takamizawa S, Takasaki Y (2015) Superelastic shape recovery of mechanically twinned 3,5-difluorobenzoic acid crystals. Angew Chem Int Ed 54:4815–4817Google Scholar
  7. 7.
    Seki T, Takamatsu Y, Ito H (2016) A screening approach for the discovery of mechanochromic gold(I) isocyanide complexes with crystal-to-crystal phase transitions. J Am Chem Soc 138:6252–6260CrossRefGoogle Scholar
  8. 8.
    Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388CrossRefGoogle Scholar
  9. 9.
    Seki T, Tokodai N, Omagari S, Nakanishi T, Hasegawa Y, Iwasa T, Taketsugu T, Ito H (2017) Luminescent mechanochromic 9-anthryl gold(I) isocyanide complex with an emission maximum at 900 nm after mechanical stimulation. J Am Chem Soc 139:6514–6517CrossRefGoogle Scholar
  10. 10.
    (a) Centore R, Fusco S, Capone F, Causà M (2016) Competition between polar and centrosymmetric packings in molecular crystals: analysis of actual and virtual structures. Cryst Growth Des 16:2260–2265. (b) Myerson AS (1999) Molecular modeling applications in crystallization. Cambridge University Press, Cambridge, pp 207–209Google Scholar
  11. 11.
    Sheldrick GM (2015) SHELXT. Program for the refinement of crystal structures. University of Göttingen, Göttingen, GermanyGoogle Scholar
  12. 12.
    Frisch MJ et al (2009) Gaussian 09 Revision C.01. Gaussian Inc, Wallingford, CTGoogle Scholar
  13. 13.
    Spartan’10. Wavefunction, Inc, Irvine, CAGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Graduate School of Chemical Science and EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations