Advertisement

Mechano-Responsive Luminescence via Crystal-to-Crystal Phase Transitions Between Chiral and Non-chiral Space Groups

Chapter
  • 131 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

A novel mechano-responsive luminescent (MRL) material based on crystal-to-crystal phase transitions between crystals of a chiral and those of a centrosymmetric space group, accompanied by a change of emission properties, is described. Initially, a gold complex containing a biphenyl moiety, which exhibits an achiral structure in solution, afforded an orange-emitting amorphous phase together with a viscous isotropic oil after evaporation of the solvent. Upon pricking, the orange-emitting oil spontaneously crystallized either in a centrosymmetric or in a chiral space group while simultaneously changing the emission properties. Remarkably, grinding the chiral crystals induced a solid-state phase transition to the achiral crystals under concomitant changes of the emission properties.

References

  1. 1.
    (a) Caruso MM, Davis DA, Shen Q, Odom SA, Sottos NR, White SR, Moore JS (2009) Mechanically-induced chemical changes in polymeric materials. Chem Rev 109:5755–5798. (b) Chi Z, Zhang X, Xu B, Zhou X, Ma C, Zhang Y, Liu S, Xu J (2012) Recent advances in organic mechanofluorochromic materials. Chem Soc Rev 41:3878–3896. (c) Sagara Y, Yamane S, Mitani M, Weder C, Kato T (2016) Mechanoresponsive luminescent molecular assemblies: an emerging class of materials. Adv Mater 28:1073–1095Google Scholar
  2. 2.
    (a) Lee A Y, Eisenberg R (2003) Luminescence tribochromism and bright emission in gold(I) thiouracilate complexes. J Am Chem Soc 125:7778–7779. (b) Sagara Y, Mutai T, Yoshikawa I, Araki K (2007) Material design for piezochromic luminescence:  hydrogen-bond-directed assemblies of a pyrene derivative. J Am Chem Soc 129:1520–1521. (c) Gierschner J, Park SY (2013) Luminescent distyrylbenzenes: tailoring molecular structure and crystalline morphology. J Mater Chem C 1:5818–5832. (d) Zhang G, Lu J, Sabat M, Fraser CL (2010) Polymorphism and reversible mechanochromic luminescence for solid-state difluoroboron avobenzone. J Am Chem Soc 132:2160–2162. (e) Ito H, Saito T, Oshima N, Kitamura N, Ishizaka S, Hinatsu Y, Wakeshima M, Kato M, Tsuge K, Sawamura M (2008) Reversible mechanochromic luminescence of [(C6F5Au)2(μ-1,4-Diisocyanobenzene)]. J Am Chem Soc 130:10044–10045. (f) Jin M, Seki T, Ito H (2016) Luminescent mechanochromism of a chiral complex: distinct crystal structures and color changes of racemic and homochiral gold(I) isocyanide complexes with a binaphthyl moiety. Chem Commun 52:8083–8086Google Scholar
  3. 3.
    (a) Wallach O (1895) Zur Kenntniss der Terpene und der ätherischen Oele. Liebigs Ann Chem 286:90–143. (b) Brock CP, Schweizer W B, Dunitz J D (1991) On the validity of Wallach’s rule: on the density and stability of racemic crystals compared with their chiral counterparts. J Am Chem Soc 113:9811–9820Google Scholar
  4. 4.
    Bernstein J (2002) Polymorphism in molecular crystals. Oxford University PressGoogle Scholar
  5. 5.
    Mercier N, Barres A-L, Giffard M, Rau I, Kajzar F, Sahraoui B (2006) Conglomerate-to-true-racemate reversible solid-state transition in crystals of an organic disulfide-based iodoplumbate. Angew Chem Int Ed 45:2100–2103CrossRefGoogle Scholar
  6. 6.
    (a) Yoon S-J, Chung JW, Gierschner J, Kim KS, Choi M-G, Kim D, Park SY (2010) Multistimuli two-color luminescence switching via different slip-stacking of highly fluorescent molecular sheets. J Am Chem Soc 132:13675–13683. (b) Harada N, Abe Y, Karasawa S, Koga N (2012) Polymorphic equilibrium responsive thermal and mechanical stimuli in light-emitting crystals of N-Methylaminonaphthyridine. Org Lett 14: 6282-6285. (c) Abe Y, Karasawa S, Koga N (2012) Crystal structures and emitting properties of trifluoromethylaminoquinoline derivatives: thermal single-crystal-to-single-crystal transformation of polymorphic crystals that emit different colors. Chem Eur J 18:15038–15048. (d) Yagai S, Okamura S, Nakano Y, Yamauchi M, Kishikawa K, Karatsu T, Kitamura A, Ueno A, Kuzuhara D, Yamada H, Seki T, Ito H (2014) Design amphiphilic dipolar π-Systems for stimuli-responsive luminescent materials using metastable states. Nat Commun 5:4013. (e) Seki T, Sakurada K, Ito H (2015) Mismatched changes of the photoluminescence and crystalline structure of a mechanochromic gold(I) isocyanide complex. Chem Commun 51:13933–13936. (f) Seki T, Ozaki T, Okura T, Asakura K, Sakon A, Uekusa H, Ito H (2015) Interconvertible multiple photoluminescence color of a gold(I) isocyanide complex in the solid state: solvent-induced blue-shifted and mechano-responsive red-shifted photoluminescence. Chem Sci 6:2187–2195. (g) Seki T, Takamatsu Y, Ito H (2016) A screening approach for the discovery of mechanochromic gold(I) Isocyanide complexes with crystal-to-crystal phase transitions. J Am Chem Soc 138:6252–6260Google Scholar
  7. 7.
    (a) Ito H, Muromoto M, Kurenuma S, Ishizaka S, Kitamura N, Sato H, Seki T (2013) Mechanical stimulation and solid seeding trigger single-crystal-to-single-crystal molecular domino transformations. Nat Commun 4:2009. (b) Seki T, Sakurada K, Ito H (2013) Controlling mechano-and seeding-triggered single-crystal-to-single-crystal phase transition: molecular domino with a disconnection of aurophilic bonds. Angew Chem Int Ed 52:12828–12832. (c) Seki T, Sakurada K, Muromoto M, Seki S, Ito H (2016) Detailed investigation of the structural, thermal, and electronic properties of gold isocyanide complexes with mechano-triggered single-crystal-to-single-crystal phase transitions. Chem Eur J 22:1968–1978Google Scholar
  8. 8.
    Krasovskiy A, Malakhov V, Gavryushin A, Knochel P (2006) efficient synthesis of functionalized organozinc compounds by the direct insertion of zinc into organic iodides and bromides. Angew Chem Int Ed 45:6040–6044CrossRefGoogle Scholar
  9. 9.
    Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388CrossRefGoogle Scholar
  10. 10.
    Sheldrick GM (2013) Program for the refinement of crystal structures. University of Göttingen, Göttingen (SHELXL-2013)Google Scholar
  11. 11.
    Frisch MJ et al (2009) Gaussian 09 revision C.01, Gaussian Inc. WallingfordGoogle Scholar
  12. 12.
    Spartan ’10. Wavefunction, Inc. IrvineGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Graduate School of Chemical Science and EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations