Luminescent Mechanochromism of a Chiral Complex: Distinct Crystal Structures and Color Changes of Racemic and Homochiral Gold(I) Isocyanide Complexes with a Binaphthyl Moiety

Part of the Springer Theses book series (Springer Theses)


Luminescent mechanochromism of a chiral gold(I) isocyanide complex bearing binaphthyl moiety is investigated. Luminescent mechanochromism of a chiral gold(I) isocyanide complex bearing binaphthyl moiety is investigated. The racemic and homochiral forms of the gold(I) complex possess distinct crystal packing arrangements with different emission colors. Upon mechanical stimulation, both crystals transform into amorphous powders that exhibit similar emission colors.


  1. 1.
    (a) Chi Z, Zhang X, Xu B, Zhou X, Ma C. Zhang Y. Liu S, Xu J (2012) Recent advances in organic mechanofluorochromic materials. Chem Soc Rev 41:3878–3896. (b) Zhang X, Chi Z. Zhang Y, Liu S, Xu J (2013) Recent advances in mechanochromic luminescent metal complexes. J Mater Chem C 1:3376–3390. (c) Sagara Y, Kato T (2009) Mechanically induced luminescence changes in molecular assemblies. Nat Chem 1:605–610 (d) Balch AL (2009) Dynamic crystals: visually detected mechanochemical changes in the luminescence of gold and other transition-metal complexes. Angew Chem Int Ed 48:2641–2644. (e) Jobbágy C, Deák A (2014) Stimuli-responsive dynamic gold complexes. Eur J Inorg Chem (2014):4434–4449. (f) Sagara Y, Yamane S, Mitani M, Weder C, Kato T (2016) Mechanoresponsive luminescence: mechanoresponsive luminescent molecular assemblies: an emerging class of materials. Adv Mater 28:977–1326Google Scholar
  2. 2.
    (a) Ito H, Saito T, Oshima N, Kitamura N, Ishizaka S, Hinatsu Y, Wakeshima M, Kato M, Tsuge K, Sawamura M (2008) Reversible mechanochromic luminescence of [(C6F5Au)2(μ-1,4-Diisocyanobenzene)]. J Am Chem Soc 130:10044–10045. (b) Osawa M, Kawata I, Igawa S, Hoshino M, Fukunaga T, Hashizume D (2010) Vapochromic and mechanochromic tetrahedral gold(I) complexes based on the 1,2-Bis(diphenylphosphino)benzene ligand. Chem Eur J 16:12114–12126. (c) Varughese S (2014) Non-covalent routes to tune the optical properties of molecular materials. J Mater Chem C 2:3499–3516. (d) Gierschner J, Park S Y (2013) Luminescent distyrylbenzenes: tailoring molecular structure and crystalline morphology. J Mater Chem C 1:5818–5832. (e) Sagara Y, Mutai T, Yoshikawa I, Araki K (2007) Material design for piezochromic luminescence:  hydrogen-bond-directed assemblies of a pyrene derivative. J Am Chem Soc 129:1520–1521. (f) Zhang G, Lu J, Sabat M, Fraser CL (2010) Polymorphism and reversible mechanochromic luminescence for solid-state difluoroboron avobenzone. J Am Chem Soc 132:2160–2162Google Scholar
  3. 3.
    (a) Wallach O (1895) Zur Kenntniss der Terpene und der ätherischen Oele. Liebigs Ann Chem 286:90–143. (b) Brock CP, Schweizer WB, Dunitz JD (1991) On the validity of Wallach’s rule: on the density and stability of racemic crystals compared with their chiral counterparts. J Am Chem Soc 113:9811–9820Google Scholar
  4. 4.
    (a) Stine KJ, Uang JYJ, Dingman SD (1993) Comparison of enantiomeric and racemic monolayers of N-stearoyl serine methyl ester by fluorescence microscopy. Langmuir 9:2112–2118. (b) Brammer L (2004) Developments in inorganic crystal engineering. Chem Soc Rev 33:476–489. (c) Zhang J, Yao YG, Bu X (2007) Comparative study of homochiral and racemic chiral metal-organic frameworks built from camphoric acid. Chem Mater 19:5083–5089. (d) Bailey AJ, Lee C, Feller RK, Orton JB, Mellot-Draznieks C, Slater B, Harrison WTA, Simoncic P, Navrotsky A, Grossel MC, Cheetham AK (2008) Comparison of chiral and racemic forms of zinc cyclohexane trans-1,2-Dicarboxylate frameworks: a structural, computational, and calorimetric study. Angew Chem Int Ed 47:8634–8637Google Scholar
  5. 5.
    (a) Delfs CD, Kitto HJ, Stranger R, Swiegers GF, Wild SB, Willis AC, Wilson GJ (2003) Inorg Chem 42:4469–4478. (b) Yang EC, Zhao HK, Ding B, Wang XG, Zhao XJ (2007) Four novel three-dimensional triazole-based zinc(II) metal–organic frameworks controlled by the spacers of dicarboxylate ligands:  hydrothermal synthesis, crystal structure, and luminescence properties. Crys Growth Des 2009–2015. (c) McGee KA, Mann KR (2009) Inefficient crystal packing in chiral [Ru(phen)3](PF6)2 enables oxygen molecule quenching of the solid-state MLCT emission. J Am Chem Soc 131:1896–1902. (d) Mastropietro TF, Yadav YJ, Szerb EI, Talarico AM, Ghedini M, Crispini A (2012) Dalton Trans 41:8899–8907Google Scholar
  6. 6.
    Zhang XP, Mei JF, Lai JC, Li CH, You XZ (2015) Mechano-induced luminescent and chiroptical switching in chiral cyclometalated platinum(II) complexes. J Mater Chem C 3:2350–2357CrossRefGoogle Scholar
  7. 7.
    (a) Yagai S, Seki T, Aonuma H, Kawaguchi K, Karatsu T, Okura T, Sakon A, Uekusa H, Ito H (2016) Mechanochromic luminescence based on crystal-to-crystal transformation mediated by a transient amorphous state. Chem Mater 28:234–241. (b) Seki T, Ozaki T, Okura T, Asakura K, Sakon A, Uekusa H, Ito H (2015) Interconvertible multiple photoluminescence color of a gold(I) isocyanide complex in the solid state: solvent-induced blue-shifted and mechano-responsive red-shifted photoluminescence. Chem Sci 6:2187–2195. (c) Ito H, Muromoto M, Kurenuma S, Ishizaka S, Kitamura N, Sato H, Seki T (2013) Mechanical stimulation and solid seeding trigger single-crystal-to-single-crystal molecular domino transformations. Nat Commun 4:2009. (d) Seki T, Sakurada K, Ito H (2013) Controlling mechano-and seeding-triggered single-crystal-to-single-crystal phase transition: molecular domino with a disconnection of aurophilic bonds. Angew Chem Int Ed 52:12828–12832Google Scholar
  8. 8.
    Bartolome C, Garcia-Cuadrado D, Ramiro Z, Espinet P (2010) Synthesis and catalytic activity of gold chiral nitrogen acyclic carbenes and gold hydrogen bonded heterocyclic carbenes in cyclopropanation of vinyl arenes and in intramolecular hydroalkoxylation of allenes. Inorg Chem 49:9758–9764CrossRefGoogle Scholar
  9. 9.
    Hong Y, Lam JW, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388CrossRefGoogle Scholar
  10. 10.
    Sheldrick GM (2013) Program for the refinement of crystal structures. University of Göttingen, Göttingen, Germany (SHELXL-2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Graduate School of Chemical Science and EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations