Advertisement

Biphenyl Moiety for a Solvent Responsive Aryl Gold(I) Isocyanide Complex with Reactivation by Mechanical Grinding

Chapter
  • 85 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Luminescent crystalline materials that are sensitive to volatile organic solvents are useful for detection of harmful gases. Although such compounds have been reported, discrimination of various types of volatile organic compounds using one compound remains challenging. Here, it is described that introduction of a biphenyl unit into a gold isocyanide scaffold (denoted complex 3) enables discrimination of various volatile organic compounds by forming 11 solvent-containing crystal structures 3/solvent with different emission properties (emission maxima of 490–580 nm). Mechanical stimulation of 3/solvent affords amorphous 3ground without solvent inclusion. The resulting 3ground can again detect volatile compounds by forming 3/solvent with concomitant emission color changes. A dozen single crystals of 3, which include 11 solvated 3/solvent and one solvent-free 3/none, also are represented. Comparison of various crystallographic parameters of 3/solvent and 3/none with their corresponding optical properties indicates that a combination of various structural properties of 3 affects the optical properties of 3. This study reveals that the introduction of a biphenyl moiety could be a useful design to develop versatile indicators for solvents through the formation of multiple luminescent crystal structure.

References

  1. 1.
    Yan X, Wang F, Zheng B, Huang F (2012) Stimuli-responsive supramolecular polymeric materials. Chem Soc Rev 41:6042–6065CrossRefGoogle Scholar
  2. 2.
    (a) Shimizu M, Hiyama T (2010) Organic fluorophores exhibiting highly efficient photoluminescence in the solid state. Chem Asi J 5:1516–1531. (b) Gierschner J, Park SY (2013) Luminescent distyrylbenzenes: tailoring molecular structure and crystalline morphology. J Mater Chem C 1:5818–5832. (c) Varughese S (2014) Non-covalent routes to tune the optical properties of molecular materials. J Mater Chem C 2:3499–3516. (d) Yan D, Evans DG (2014) Molecular crystalline materials with tunable luminescent properties: from polymorphs to multi-component solids. Mater Horiz 1:46–57Google Scholar
  3. 3.
    (a) Wadas TJ, Wang QM, Kim YJ, Flaschenreim C, Blanton TN, Eisenberg R (2004) Vapochromism and its structural basis in a luminescent Pt(II) terpyridine–nicotinamide complex. J Am Chem Soc 126:16841–16849. (b) Grove LJ, Rennekamp JM, Jude H, Connick WB (2004) A new class of platinum(II) vapochromic salts. J Am Chem Soc 126:1594–1595. (d) Malwitz MA, Lim SH, White–Morris RL, Pham DM, Olmstead MM, Balch AL (2012) Crystallization and interconversions of vapor-sensitive, luminescent polymorphs of [(C6H11NC)2AuI](AsF6) and [(C6H11NC)2AuI](PF6). J Am Chem Soc 134:10885–10893. (f) Koshevoy IO, Chang YC, Karttunen AJ, Haukka M, Pakkanen T, Chou PT (2012) Modulation of metallophilic bonds: solvent-induced isomerization and luminescence vapochromism of a polymorphic Au–Cu cluster. J Am Chem Soc 134:6564–6567. (g) Kobayashi A, Komatsu K, Ohara H, Kamada W, Chishina Y, Tsuge K, Chang HC, Kato MM (2013) Photo- and vapor-controlled luminescence of rhombic dicopper(I) complexes containing dimethyl sulfoxide. Inorg Chem 52:13188–13198. (h) Sun H, Liu S, Lin W, Zhang KY, Lv W, Huang X, Huo F, Yang H, Jenkins G, Zhao Q, Huang W (2014) Smart responsive phosphorescent materials for data recording and security protection. Nat Commun 5:3601. (i) Deak A, Jobbagy C, Marsi G, Molnar M, Szakacs Z, Baranyai P (2015) Anion-, solvent-, temperature-, and mechano-responsive photoluminescence in gold(i) diphosphine-based dimers. Chem Eur J 21:11495–11508. (j) Jiang B, Zhang J, Ma JQ, Zheng W, Chen LJ, Sun B, Li C, Hu BW, Tan H, Li X, Yang HB (2016) Vapochromic behavior of a chair-shaped supramolecular metallacycle with ultra-stability. J Am Chem Soc 138:738–741Google Scholar
  4. 4.
    (a) Kato M (2007) Luminescent platinum complexes having sensing functionalities. Bull Chem Soc Jpn 80:287–294. (b) Zhang X, Li B, Chen Z-H, Chen Z-N (2012) Luminescence vapochromism in solid materials based on metal complexes for detection of volatile organic compounds (VOCs). J Mater Chem 22:11427–11441. (c) Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2012) Metal–organic framework materials as chemical sensors. Chem Rev 112:1105–1125. (d) Wenger OS (2013) Vapochromism in organometallic and coordination complexes: chemical sensors for volatile organic compounds. Chem Rev 113:3686–3733. (e) Zhou X, Lee S, Xu Z, Yoon J (2015) Recent progress on the development of chemosensors for gases. Chem Rev 115:7944–8000Google Scholar
  5. 5.
    (a) Fernandez EJ, Lopez-De-Luzuriaga JM, Monge M, Olmos ME, Perez J, Laguna A, Mohamed AA, Fackler JP Jr (2003) {Tl[Au(C6Cl5)2]}n:  a vapochromic complex. J Am Chem Soc 125:2022–2023. (b) Kato M, Kishi S, Wakamatsu Y, Sugi Y, Osamura Y, Koshiyama T, Hasegawa M (2005) Outstanding vapochromism and pH-dependent coloration of dicyano(4,4′-dicarboxy-2,2′-bipyridine)platinum(II) with a three-dimensional network structure. Chem Lett 34:1368–1369. (c) Ni J, Zhang LY, Wen HM, Chen ZN (2009) Luminescence vapochromic properties of a platinum(II) complex with 5,5′-bis(trimethylsilylethynyl)-2,2′-bipyridine. Chem Commun 2009:3801–3803. (d) Takashima Y, Martinez VM, Furukawa S, Kondo M, Shimomura S, Uehara H, Nakahama M, Sugimoto K, Kitagawa S (2011) Molecular decoding using luminescence from an entangled porous framework. Nat Commun 2:168. (e) Ito S, Hirose A, Yamaguchi M, Tanaka K, Chujo Y (2016) Size-discrimination of volatile organic compounds utilizing gallium diiminate by luminescent chromism of crystallization-induced emission via encapsulation-triggered crystal–crystal transition. J Mater Chem C 4:5564–5571Google Scholar
  6. 6.
    (a) White-Morris RL, Olmstead MM, Balch AL, Elbjeirami O, Omary MA (2003) Orange luminescence and structural properties of three isostructural halocyclohexylisonitrilegold(i) complexes. Inorg Chem 42:6741–6748. (b) Cauteruccio S, Loos A, Bossi A, Blanco Jaimes MC, Dova D, Rominger F, Prager S, Dreuw A, Licandro E, Hashmi AS (2013) Gold(I) complexes of tetrathiaheterohelicene phosphanes. Inorg Chem 52:7995–8004. (c) Fujisawa K, Okuda Y, Izumi Y, Nagamatsu A, Rokusha Y, Sadaike Y, Tsutsumi O (2014) Reversible thermal-mode control of luminescence from liquid-crystalline gold(i) complexes. J Mater Chem C 2:3549–3555Google Scholar
  7. 7.
    (a) Hau FK, He X, Lam WH, Yam VW (2011) Highly selective ion probe for Al3+ based on Au(I)···Au(I) Interactions in a bis-alkynyl calix[4]arene au(i) isocyanide scaffold. Chem Commun 47:8778–8780. (b) Hau FK, Yam VW (2016) Synthesis and cation-binding studies of gold(i) complexes bearing oligoether isocyanide ligands with ester and amide as linkers. Dalton Trans 45:300–306Google Scholar
  8. 8.
    (a) Bayon R, Coco S, Espinet P, Fernandez-Mayordomo C, Martin-Alvarez JM (1997) Liquid-crystalline mono- and dinuclear (perhalophenyl)gold(i) isocyanide complexes. Inorg Chem 36:2329–2334. (b) Coco S, Cordovilla C, Espinet P, Martin-Alvarez J, Munoz P (2006) Dinuclear gold(i) isocyanide complexes with luminescent properties, and displaying thermotropic liquid crystalline behavior. Inorg Chem 45:10180–10187Google Scholar
  9. 9.
    Ito H, Saito T, Oshima N, Kitamura N, Ishizaka S, Hinatsu Y, Wakeshima M, Kato M, Tsuge K, Sawamura M (2008) Reversible mechanochromic luminescence of [(C6F5Au)2(μ-1,4-diisocyanobenzene)]. J Am Chem Soc 130:10044–10045CrossRefGoogle Scholar
  10. 10.
    (a) Sagara Y, Mutai T, Yoshikawa I, Araki K (2007) Material design for piezochromic luminescence:  hydrogen-bond-directed assemblies of a pyrene derivative. J Am Chem Soc 129:1520–1521. (b) Ooyama Y, Kagawa Y, Fukuoka H, Ito G, Harima Y (2009) Mechanofluorochromism of a series of benzofuro[2,3-c]oxazolo[4,5-a]carbazole-type fluorescent dyes. Eur J Org Chem 2009:5321–5326. (c) Yoon S-J, Chung JW, Gierschner J, Kim KS, Choi M-G, Kim D, Park SY (2010) Multistimuli two-color luminescence switching via different slip-stacking of highly fluorescent molecular sheets. J Am Chem Soc 132:13675–13683. (d) Zhang G, Lu J, Sabat M, Fraser CL (2010) Polymorphism and reversible mechanochromic luminescence for solid-state difluoroboron avobenzone. J Am Chem Soc 132:2160–2162. (e) Sagara Y, Kato T (2011) Brightly tricolored mechanochromic luminescence from a single-luminophore liquid crystal: reversible writing and erasing of images. Angew Chem Int Ed 50:9128–9132. (f) Mizoshita N, Tani T, Inagaki S (2012) Isothermally reversible fluorescence switching of a mechanochromic perylene bisimide dye. Adv Mater 24:3350–3355. (g) Nagura K, Saito S, Yusa H, Yamawaki H, Fujihisa H, Sato H, Shimoikeda Y, Yamaguchi S (2013) Distinct responses to mechanical grinding and hydrostatic pressure in luminescent chromism of tetrathiazolylthiophene. J Am Chem Soc 135:10322–10325. (h) Yagai S, Okamura S, Nakano Y, Yamauchi M, Kishikawa K, Karatsu T, Kitamura A, Ueno A, Kuzuhara D, Yamada H, Seki T, Ito H (2014) Design amphiphilic dipolar π-systems for stimuli-responsive luminescent materials using metastable states. Nat Commun 5:4013. (i) Sagara Y, Lavrenova A, Crochet A, Simon Y C, Fromm K M, Weder C (2016) A Thermo- and mechanoresponsive cyano-substituted oligo(p-phenylene vinylene) derivative with five emissive states. Chem Eur J 22:4374–4378Google Scholar
  11. 11.
    Seki T, Ozaki T, Okura T, Asakura K, Sakon A, Uekusa H, Ito H (2015) Interconvertible Multiple Photoluminescence Color of a Gold(I) Isocyanide Complex in the Solid State: Solvent-Induced Blue-Shifted and Mechano-Responsive Red-Shifted Photoluminescence. Chem Sci 6: 2187–2195Google Scholar
  12. 12.
    (a) Seki T, Sakurada K, Ito H (2013) Controlling mechano- and seeding-triggered singlecrystal-to-single-crystal phase transition: molecular domino with a disconnection of aurophilic bonds. Angew Chem Int Ed 52:12828–12832. (b) Ito H, Muromoto M, Kurenuma S, Ishizaka S, Kitamura N, Sato H, Seki T (2013) Mechanical stimulation and solid seeding trigger single-crystal-to-single-crystal molecular domino transformations. Nat Commun 4:2009. (c) Seki T, Sakurada K, Ito H (2015) Mismatched changes of the photoluminescence and crystalline structure of a mechanochromic gold(i) isocyanide complex. Chem Commun 51:13933–13936. (d) Yagai S, Seki T, Aonuma H, Kawaguchi K, Karatsu T, Okura T, Sakon A, Uekusa H, Ito H (2016) Mechanochromic luminescence based on crystal-to-crystal transformation mediated by a transient amorphous state. Chem Mater 28:234–241. (e) Seki T, Takamatsu Y, Ito H (2016) A screening approach for the discovery of mechanochromic gold(i) isocyanide complexes with crystal-to-crystal phase transitions. J Am Chem Soc 138:6252–6260Google Scholar
  13. 13.
    Seki T, Sakurada K, Muromoto M, Ito H (2015) Photoinduced single-crystal-to-single-crystal phase transition and photosalient effect of a gold(i) isocyanide complex with shortening of intermolecular aurophilic bonds. Chem Sci 6:1491–1497CrossRefGoogle Scholar
  14. 14.
    (a) Shan X-C, Jiang F-L, Chen L, Wu M-Y, Pan J, Wan X-Y, Hong M-C (2013) Using cuprophilicity as a multi-responsive chromophore switching color in response to temperature, mechanical force and solvent vapors. J Mater Chem C 1:4339–4349. (b) Ohba T, Kobayashi A, Chang HC, Kato M (2013) Vapour and mechanically induced chromic behaviour of platinum complexes with a dimer-of-dimer motif and the effects of heterometal ions. Dalton Trans 42:5514–5523. (c) Choi SJ, Kuwabara J, Nishimura Y, Arai T, Kanbara T (2012) Two-step changes in luminescence color of Pt(II) complex bearing an amide moiety by mechano- and vapochromism. Chem Lett 41:65–67. (d) Zhang X, Wang JY, Ni J, Zhang LY, Chen ZN (2012) Vapochromic and mechanochromic phosphorescence materials based on a platinum(ii) complex with 4-trifluoromethylphenylacetylide. Inorg Chem 51:5569–5579Google Scholar
  15. 15.
    Grein F (2002) Twist angles and rotational energy barriers of biphenyl and substituted biphenyls. J Phys Chem A 106:3823–3827CrossRefGoogle Scholar
  16. 16.
    MacNeil DD, Decken A (1999) 2,2′-dibromobiphenyl. Acta Cryst Sect C 55:628–630CrossRefGoogle Scholar
  17. 17.
    (a) Bhardwaj RM, Price LS, Price SL, Reutzel-Edens SM, Miller GJ, Oswald IDH, Johnston BF, Florence AJ (2013) Exploring the experimental and computed crystal energy landscape of olanzapine. Cryst Growth Des 13:1602–1617. (b) Sekiya R, Yamasaki Y, Tada W, Shio H, Haino T (2014) Guest induced head-to-tail columnar assembly of 5,17-difunctionalized calix[4]arene. CrystEngComm 16:6023–6032. (c) Bērziņš A, Skarbulis E, Actiņš A (2015) Structural characterization and rationalization of formation, stability, and transformations of benperidol solvates. Cryst Growth Des 15:2337–2351Google Scholar
  18. 18.
    Fan Y, Zhao Y, Ye L, Li B, Yang G, Wang Y (2009) Polymorphs and pseudopolymorphs of N, N-Di(n-butyl)quinacridone: structures and solid-state luminescence properties. Cryst Growth Des 9:1421–1430CrossRefGoogle Scholar
  19. 19.
    (a) Bernstein J, Davey RJ, Henck JO (1999) Concomitant polymorphs. Angew Chem Int Ed 38: 3440–3461. (b) Braga D, Grepioni F (2000) Organometallic polymorphism and phase transitions. Chem Soc Rev 29:229–238. (c) Blagden N, Davey RJ (2003) Polymorph selection:  challenges for the future? Cryst Growth Des 3:873–885Google Scholar
  20. 20.
    (a) Balch AL (2004) Polymorphism and luminescent behavior of linear, two-coordinate gold(i) complexes. Gold Bull 37:45–50 (b) Pyykkö P (2004) Theoretical chemistry of gold. Angew Chem Int Ed 43:4412–4456. (c) Katz MJ, Sakai K, Leznoff DB (2008) The use of aurophilic and other metal–metal interactions as crystal engineering design elements to increase structural dimensionality. Chem Soc Rev 37:1884–1895. (d) Schmidbaur H, Schier A (2008) A briefing on aurophilicity. Chem Soc Rev 37:1931–1951. (e) Balch AL (2009) Dynamic crystals: visually detected mechanochemical changes in the luminescence of gold and other transition-metal complexes. Angew Chem Int Ed 48:2641–2644. (g) Chen Y, Cheng G, Li K, Shelar DP, Lu W, Che C-M (2014) Phosphorescent polymeric nanomaterials with metallophilic d10···d10 interactions self-assembled from [Au(NHC)2]+ and [M(CN)2]. Chem Sci 5:1348–1353Google Scholar
  21. 21.
    Seki T, Kurenuma S, Ito H (2013) Luminescence color-tuning through polymorph doping: preparation of a white-emitting solid from a single gold(I)-isocyanide complex by simple precipitation. Chem Eur J 19:16214–16220CrossRefGoogle Scholar
  22. 22.
    Jong JD, Boyer JH (1972) Photoisomerization of 2-isocyano- and 2, x’-diisocyanobiphenyls in cyclohexane. J Org Chem 37:3571–3577CrossRefGoogle Scholar
  23. 23.
    Krasovskiy A, Malakhov V, Gavryushin A, Knochel P (2006) Efficient synthesis of functionalized organozinc compounds by the direct insertion of zinc into organic iodides and bromides. Angew Chem Int Ed 45:6040–6044CrossRefGoogle Scholar
  24. 24.
    Sheldrick GM (2013) SHELXL-2013, program for the refinement of crystal structures. University of Göttingen, Göttingen, GermanyGoogle Scholar
  25. 25.
    Frisch MJ et al (2009) Gaussian 09, Revision C.01. Gaussian Inc., Wallingford CTGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Graduate School of Chemical Science and EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations