General Introduction

Part of the Springer Theses book series (Springer Theses)


Near a decade, solid-state luminescent materials exhibiting photo-physical properties alterations by external stimulations, such as heat, vapor, and mechanical stress, have attracted many interests because of its high potential to generate new functional sensor or security materials. In general, luminescent properties of solid sample are highly dominated by electronical environment of luminophore in bulk space, and the property is strongly affected by intermolecular packing mode and/or molecular conformation, in other words “crystal structure”. Thus, exploring a rational design to control the crystal structure of luminescent materials correlating the external stimulation would highly contribute to develop novel stimuli-responsive luminescent material. Herein, general introduction for external stimuli responsive luminescent solid-state materials and several key concepts for the investigation will be described.


  1. 1.
    Sagara Y, Yamane S, Mitani M, Weder C, Kato T (2016) Mechanoresponsive luminescent molecular assemblies: an emerging class of materials. Adv Mater 28:1073–1095CrossRefGoogle Scholar
  2. 2.
    Mutai T, Satou H, Araki K (2005) Reproducible on–off switching of solid-state luminescence by controlling molecular packing through heat-mode interconversion. Nat Mater 4:685–687CrossRefGoogle Scholar
  3. 3.
    (a) Sagara Y, Mutai T, Yoshikawa I, Araki K (2007) Material design for piezochromic luminescence:  hydrogen-bond-directed assemblies of a pyrene derivative. J Am Chem Soc 129:1520–1521. (b) Sagara Y, Komatsu T, Ueno T, Hanaoka K, Kato T, Nagano T (2013) A water-soluble mechanochromic luminescent pyrene derivative exhibiting recovery of the initial photoluminescence color in a high-humidity environment. Adv Funct Mater 23:5277–5284Google Scholar
  4. 4.
    Luo X, Zhao W, Shi J, Li C, Liu Z, Bo Z, Dong YQ, Tang BZ (2012) Reversible switching emissions of tetraphenylethene derivatives among multiple colors with solvent vapor, mechanical, and thermal stimuli. J Phys Chem C 116:21967–21972CrossRefGoogle Scholar
  5. 5.
    (a) Assefa Z, Omary MA, McBurnett BG, Mohamed AA, Patterson HH, Staples RJ, Fackler JP (2002) Syntheses, structure, and photoluminescence properties of the 1-dimensional chain compounds [(TPA)2Au][Au(CN)2] and (TPA)AuCl (TPA = 1,3,5-Triaza-7-phosphaadamantane). Inorg Chem 41:6274–6280. (b) Grey JK, Butler IS, Reber C (2003) Pressure-induced enhancements of luminescence intensities and lifetimes correlated with emitting-state distortions for thiocyanate and selenocyanate complexes of platinum(II) and palladium(II). Inorg Chem 42:6503-6518. (c) Lee YA, Eisenberg R (2003) Luminescence tribochromism and bright emission in gold(i) thiouracilate complexes. J Am Chem Soc 125:7778–7779. (d) Schneider J, Lee YA, Pérez J, Brennessel WW, Flaschenriem C, Eisenberg R (2008) Strong intra- and intermolecular aurophilic interactions in a new series of brilliantly luminescent dinuclear cationic and neutral Au(I) benzimidazolethiolate complexes. Inorg Chem 47:957–968Google Scholar
  6. 6.
    (a) Ito H, Saito T, Oshima N, Kitamura N, Ishizaka S, Hinatsu Y, Wakeshima M, Kato M, Tsuge K, Sawamura M (2008) Reversible mechanochromic luminescence of [(C6F5Au)2(μ-1,4-Diisocyanobenzene)]. J Am Chem Soc 130:10044–10045. (b) Seki T, Ozaki T, Ohkura T, Asakura K, Sakon A, Uekusa H, Ito H (2015) Interconvertible multiple photoluminescence color of a gold(i) isocyanide complex in the solid state: solvent-induced blue-shifted and mechano-responsive red-shifted photoluminescence. Chem Sci 6:2187–2195. (c) Yagai S, Seki T, Aonuma H, Kawabuchi K, Karatsu T, Okura T, Sakon A, Uekusa H, Ito H (2015) Mechanochromic luminescence based on crystal-to-crystal transformation mediated by a transient amorphous state. Chem Mat 28:234–241. (d) Seki T, Takamatsu Y, Ito H (2016) A screening approach for the discovery of mechanochromic gold(I) isocyanide complexes with crystal-to-crystal phase transitions. J Am Chem Soc 138:6252–6260Google Scholar
  7. 7.
    (a) Ito H, Muromoto M, Kurenuma S, Ishizaka S, Kitamura N, Sato H, Seki T (2013) Mechanical stimulation and solid seeding trigger single-crystal-to-single-crystal molecular domino transformations. Nat Commun 4:2009. (b) Seki T, Sakurada K, Ito H Controlling mechano- and seeding-triggered single-crystal-to-single-crystal phase transition: molecular domino with a disconnection of aurophilic bonds. Angew Chem Int Ed 52:12828–12832. (c) Seki T, Sakurada K, Muromoto M, Seki S, Ito H (2016) Detailed investigation of the structural, thermal, and electronic properties of gold isocyanide complexes with mechano-triggered single-crystal-to-single-crystal phase transitions. Chem–Eur J 22:1968–1978Google Scholar
  8. 8.
    (a) Pyykkö P (2004) Theoretical chemistry of gold. Angew Chem Int Ed 43: 4412–4456. (b) Katz MJ, Sakai K, Leznoff DB (2008) The use of aurophilic and other metal–metal interactions as crystal engineering design elements to increase structural dimensionality. Chem Soc Rev 37:1884–1895. (c) Schmidbaur H, Schier A A briefing on aurophilicity. Chem Soc Rev 37:1931–1951. (d) Laguna A (2008) Modern supramolecular gold chemistry. Wiley, WeinheimGoogle Scholar
  9. 9.
    Roundhill DM, Fackler JP Jr (1999) Optoelectronic properties of inorganic compounds. Springer Science & Business Media, New York, pp 195–226CrossRefGoogle Scholar
  10. 10.
    (a) Yoon S-J, Chung JW, Gierschner J, Kim KS, Choi M-G, Kim D, Park SY (2010) Multistimuli two-color luminescence switching via different slip-stacking of highly fluorescent molecular sheets. J Am Chem Soc 132:13675–13683. (b) Harada N, Abe Y, Karasawa S, Koga N (2012) Polymorphic equilibrium responsive thermal and mechanical stimuli in light-emitting crystals of N-Methylaminonaphthyridine. Org Lett 14:6282–6285. (c) Yagai S, Okamura S, Nakano Y, Yamauchi M, Kishikawa K, Karatsu T, Kitamura A, Ueno A, Kuzuhara D, Yamada H, Seki T, Ito H (2014) Design amphiphilic dipolar π-systems for stimuli-responsive luminescent materials using metastable states. Nat Commun 5:4013. (d) Seki T, Sakurada K, Ito H (2015) Mismatched changes of the photoluminescence and crystalline structure of a mechanochromic gold(I) isocyanide complex. Chem Commun 51:13933–13936Google Scholar
  11. 11.
    (a) Li FF, Zhang L, Gong LL, Yan CS, Gao HY, Luo F (2017) Reversible photo/thermoswitchable dual-color fluorescence through single-crystal-to-single-crystal transformation. Dalton Trans 46:338–341. (b) Lim SH, Olmstead MM, Balch AL (2013) Inorganic topochemistry. Vapor-induced solid state transformations of luminescent, three-coordinate gold(I) complexes. Chem Sci 4:311–318. (c) Zeng M-H, Tan Y-X, He Y-P, Yin Z, Chen Q, Kurmoo M (2013) A porous 4-fold-interpenetrated chiral framework exhibiting vapochromism, Single-crystal-to-single-crystal solvent exchange, gas sorption, and a poisoning effect. Inorg Chem 52:2353–2360. (d) Huang R-W, Wei Y-S, Dong X-Y, Wu X-H, Du C-X, Zang S-Q, Mak TCW (2017) Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal–organic framework. Nat Chem 9:689–697. (e) Lim SH, Olmstead MM, Balch AL (2011) Molecular accordion: vapoluminescence and molecular flexibility in the orange and green luminescent crystals of the dimer, Au2(μ-bis-(diphenylphosphino)ethane)2Br2. J Am Chem Soc 133:10229–10238. (f) Liu G, Liu J, Liu Y, Tao X (2014) Oriented single-crystal-to-single-crystal phase transition with dramatic changes in the dimensions of crystals. J Am Chem Soc 136:590–593. (g) Liu J, Liu G, Liu Y, Zheng X, Han Q, Ye X, Tao X (2016) The role of weak interactions in the mechano-induced single-crystal-to-single-crystal phase transition of 8 hydroxyquinoline based co-crystals. Chem Asian J 11:1682–1687. (h) Karothu DP, Weston J, Desta IT, Naumov P (2016) Shape-memory and self-healing effects in mechanosalient molecular crystals. J Am Chem Soc 138:13298–13306. (i) Liu GF, Liu J, Ye X, Nie LN, Gu PY, Tao XT, Zhang QC (2017) Self-healing behavior in a thermo-mechanically responsive cocrystal during a reversible phase transition. Angew Chem Int Ed 56:198–202. (j) Takamizawa S, Miyamoto Y (2014) Superelastic organic crystals. Angew Chem Int Ed 53:6970–6973. (k) Takasaki Y, Takamizawa S (2015) Reversible crystal deformation of a single-crystal host of copper(II) 1-naphthoate-pyrazine through crystal phase transition induced by methanol vapor sorption. Chem Commun 51:5024–5027. (l) Takamizawa S, Takasaki Y (2015) Superelastic shape recovery of mechanically twinned 3,5-Difluorobenzoic acid crystals. Angew Chem Int Ed 54:4815–4817. (m) Naumov P, Bharadwaj PK (2015) Single-crystal-to-single-crystal transformations. CrystEngComm 17:8775. (n) Chaudhary A, Mohammad A, Mobin S M (2017) Recent advances in single-crystal-to-single-crystal transformation at the discrete molecular level. Cryst Growth Des 17:2893–2910Google Scholar
  12. 12.
    Grein F (2002) Twist angles and rotational energy barriers of biphenyl and substituted biphenyls. J Phys Chem A 106:3823–3827CrossRefGoogle Scholar
  13. 13.
    Flack HD (2003) Chiral and achiral crystal structures. Helv Chemica Acta 86:905–921CrossRefGoogle Scholar
  14. 14.
    (a) Wallach O (1895) Zur Kenntniss der Terpene und der ätherischen Oele. Liebigs Ann Chem 286:90–118. (b) Brock CP, Schweizer WB, Dunitz JD (1991) On the validity of Wallach’s rule: on the density and stability of racemic crystals compared with their chiral counterparts. J Am Chem Soc 113:9811–9820. (c) Marciniak J, Michal A, Weizhao C, Andrzej K (2014) Wallach’s rule enforced by pressure in mandelic acid. J Phys Chem C 118:4309–4313Google Scholar
  15. 15.
    (a) Vogelsberg CS, Garcia-Garibay MA (2012) Crystalline molecular machines: function, phase order, dimensionality, and composition. Chem Soc Rev 41:1892–1910. (b) Khuong TAV, Nuñez JE, Godinez CE, Garcia-Garibay MA (2006) Crystalline molecular machines:  a quest toward solid-state dynamics and function. Acc Chem Res 39:413–422Google Scholar
  16. 16.
    (a) Comotti A, Bracco S, Valsesia P, Beretta M, Sozzani P (2010) Fast molecular rotor dynamics modulated by guest inclusion in a highly organized nanoporous organosilica. Angew Chem Int Ed 49:1760–1764. (b) Bracco S, Comotti A, Valsesia P, Chmelka BF, Sozzani P (2008) Molecular rotors in hierarchically ordered mesoporous organosilica frameworks. Chem Commun 39:4798–4800Google Scholar
  17. 17.
    (a) Kitagawa S, Kitaura R, Noro S -I (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375. (b) Inukai M, Fukushima T, Hijikata Y, Ogiwara N, Horike S, Kitagawa S (2015) Control of molecular rotor rotational frequencies in porous coordination polymers using a solid-solution approach. J Am Chem Soc 137:12183–12186. (c) Seo J, Matsuda R, Sakamoto H, Bonneau C, Kitagawa S (2009) A pillared-layer coordination polymer with a rotatable pillar acting as a molecular gate for guest molecules. J Am Chem Soc 131:12792–12800. (d) Horike S, Matsuda R, Tanaka D, Matsubara S, Mizuno M, Endo K, Kitagawa S (2006) Dynamic motion of building blocks in porous coordination polymers. Angew Chem Int Ed 45:7226–7230Google Scholar
  18. 18.
    (a) Dominguez Z, Khuong TAV, Sanrame CN, Dang H, Nuñez JE, Garcia-Garibay MA (2003) Molecular compasses and gyroscopes with polar rotors:  synthesis and characterization of crystalline forms. J Am Chem Soc 125:8827–8837. (b) Horansky RD, Clarke LI, Winston EB, Price JC, Karlen SD, Jarowski PD, Santillan R, Garcia-Garibay MA (2006) Dipolar rotor-rotor interactions in a difluorobenzene molecular rotor crystal. Phys Rev B 74:54306. (c) Akutagawa T, Koshinaka H, Sato D, Takeda S, Noro S-I, Takahashi H, Kumai R, Tokura Y, Nakamura T (2009) Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators. Nat Mater 8:342–347. (d) Setaka W, Yamaguchi K (2013) Order–disorder transition of dipolar rotor in a crystalline molecular gyrotop and its optical change. J Am Chem Soc 135:14560–14563Google Scholar
  19. 19.
    Bracco S, Beretta M, Cattaneo A, Comotti A, Falqui A, Zhao K, Rogers C, Sozzani P (2015) Dipolar rotors orderly aligned in mesoporous fluorinated organosilica architectures. Angew Chem Int Ed 54:4773–4777CrossRefGoogle Scholar
  20. 20.
    (a) Winston EB, Lowell PJ, Vacek J, Chocholoušová J, Michl J, Price JC (2008) Dipolar molecular rotors in the metal–organic framework crystal IRMOF-2. Phys Chem Chem Phys 10:5188–5191. (b) Devautour-Vinot SB, Maurin G, Serre C, Horcajada P, Da Cunha DP, Guillerm V, De Souza Cosa E, Taulelle F, Martineau C (2012) Structure and dynamics of the functionalized MOF type UiO-66(Zr): NMR and dielectric relaxation spectroscopies coupled with DFT calculations. Chem Mater 24:2168–2177Google Scholar
  21. 21.
    Hughs M, Jimenez M, Khan SI, Garcia-Garibay MA (2013) Synthesis, rotational dynamics, and photophysical characterization of a crystalline linearly conjugated phenylene ethynylene molecular dirotor. J Org Chem 78:5293–5302CrossRefGoogle Scholar
  22. 22.
    (a) Shustova NB, McCarthy BD, Dincă M (2011) Turn-on fluorescence in tetraphenylethylene-based metal–organic frameworks: an alternative to aggregation-induced emission. J Am Chem Soc 133:20126–20129. (b) Shustova NB, Ong T-C, Cozzolino AF, Michalis VK, Griffin RG, Dincă M (2012) Phenyl ring dynamics in a tetraphenylethylene-bridged metal–organic framework: implications for the mechanism of aggregation-induced emission. J Am Chem Soc 134:15061–15070. (c) Shustova NB, Cozzolino AF, Reineke S, Baldo M, Dincă M (2013) Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal–organic frameworks with open metal sites. J Am Chem Soc 135:13326–13329Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Graduate School of Chemical Science and EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations