Skip to main content

A Brief Overview of Crystal Plasticity Approach for Computational Materials Modeling

  • Conference paper
  • First Online:
Advances in Materials Science and Engineering

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 1271 Accesses

Abstract

This article presents an overview of crystal plasticity (CP)-based modeling and simulation. A typical CP approach includes the kinematics and constitutive laws to determine the mechanical response of polycrystalline materials. Constitutive laws can be phenomenological or microstructure-based. The latter allows incorporating different deformation mechanisms responsible for deforming the material plastically. For solving the equilibrium and compatibility equations, the types of numerical solvers used are also discussed. For modeling the inhomogeneity in the polycrystalline and multiphase material systems, homogenization techniques are used in CP for the flow of information from single crystal to polycrystalline scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helm, D., Butz, A., Raabe, D., Gumbsch, P.: Microstructure-based description of the deformation of metals: theory and application. JOM 63, 26–33 (2011)

    Article  Google Scholar 

  2. Sachtleber, M., Zhao, Z., Raabe, D.: Experimental investigation of plastic grain interaction. Mater. Sci. Eng. 336, 1–87 (2002)

    Article  Google Scholar 

  3. Wang, L., Barabash, R.I., Yang, Y., Bieler, T.R., Crimp, M.A., Eisenlohr, P.: Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline α–Ti. Metall. Mater. Trans. A 42A, 626–635 (2010)

    Google Scholar 

  4. Pokharel, R., Lind, J., Anand, K., Lebenson, R.A., Li, S.F., Kenesei, P., Suter, R.M., Rollet, A.D.: Polycrystal plasticity: comparison between grain-scale observations of deformation and simulations. Annu. Rev. Condens. Matter Phys 317–346 (2014)

    Article  Google Scholar 

  5. Xie, H., Zhengyi, J., Zhao, J.: Microfroming technology. Academic Press (2017)

    Google Scholar 

  6. Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010)

    Article  Google Scholar 

  7. Lebensohn, R.A.: N-site modeling of a 3D viscoplastic polycrystal using fast fourier transform. Acta Mater. 49, 2723–2737 (2001)

    Article  Google Scholar 

  8. Eisenlohr, P., Diehl, M., Lebenson, R.A., Roters, F.: A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int. J. Plast 46, 37–53 (2013)

    Article  Google Scholar 

  9. Roters, F., Eisenlohr, P., Bieler, T.R.: Crystal plasticity finite element methods in materials science and engineering. Wiley-VCH (2010)

    Google Scholar 

  10. Kalidindi, S.R., Bronkhorst, C.A., Anand, L.: Crystallographic texture evolution in bulk deformation processing of FCC metals. J. Mech. Phys. Solids 40, 537–569 (1992)

    Article  Google Scholar 

  11. Kalidindi, S.R., Bachu, V.: On the accuracy of the predictions of texture evolutions by the finite element technique for FCC polycrystals. Mater. Sci. Eng. 257(1), 108–117 (1998)

    Article  Google Scholar 

  12. Kalidindi, S.R., Anand, L: Macroscopic shape change and evolution of crystallographic texture in pre-textured FCC metals. J. Mech. Phys. Solids. 42, 459–490 (1994)

    Article  Google Scholar 

  13. Chakraborty, A., Eisenlohr, P.: Chemo-thermo-mechanically coupled crystal plasticity simulation of stress evolution in thermally strained β-Sn films. J. Electron. Mater. 27(9), 1409–1431 (2018)

    Google Scholar 

  14. Ma, A., Roters, F., Raabe, D.: A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Mater. 54, 2169–2179 (2006)

    Article  Google Scholar 

  15. Alankar, A., Eisenlohr, P., Raabe, D.: A dislocation density-based crystal plasticity constitutive model for prismatic slip in α-titanium. Acta Mater. 59, 7003–7009 (2011)

    Article  Google Scholar 

  16. Reuber, C., Eisenlohr, P., Roters, F., Raabe, D.: Dislocation density distribution around an indent in single-crystalline nickel: comparing nonlocal crystal plasticity finite-element predictions with experiments. Acta Mater. 71, 333–348 (2014)

    Article  Google Scholar 

  17. Ma, A., Roters, F.: A constitutive model for FCC single crystals based on dislocation densities and its application to uniaxial compression for aluminium single crystals. Acta Mater. 52, 3603–3612 (2004)

    Article  Google Scholar 

  18. Ma, A., Roters, F., Raabe, D.: On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling—theory, experiments, and simulations. Acta Mater. 54, 2181–2194 (2006)

    Article  Google Scholar 

  19. Roters, F., Diehl, M., Shantharaj, P., Eisenlohr, P., Reuber, C., Wong, S.L., Maiti, T., Ebrahimi, A., Hochrainer, T., Fabritius, H., Niklov, S., Friak, M., Fujita, N., Grilli, N.: DAMASK—the düsseldorf advanced material simulation Kit for modelling mutliphysics crystal plasticity, thermal, and damage phenomena from the singal crystal up to the component scale. Comut. Mater. Sci. 158, 420–478 (2019)

    Article  Google Scholar 

  20. Maiti, T., Eisenlohr, P.: Fourier-based spectral method solution to finite strain crystal plasticity with free surfaces. Scr. Mater. 145, 37–40 (2018)

    Article  Google Scholar 

  21. Shanthraj, P., Eisenlohr, P., Diehl, M., Roters, F.: Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. Int. J. Plast 66, 31–45 (2015)

    Article  Google Scholar 

  22. Diehl, M.: A spectral method using fast Fourier transform to solve elastoviscoplastic mechanical boundary value problems (Thesis). Max-Planck-Institut fur Eisenforsch, GmbH (2010)

    Google Scholar 

  23. Lebenson, R.A., Kanjarla, A.K., Eisenlohr, P.: An elasto-viscoplastic formulation based on fast Fourier transform for the prediction of micromechanical fields in polycrystalline materials. Int. J. Plast 32–33, 59–69 (2012)

    Article  Google Scholar 

  24. VPSC Code Homepage. http://public.lanl.gov/lebenso/. Last Accessed 29 Aug 2019

  25. Roters, F., Eisenlohr, P., Kords, C., Tjahjanto, D.D., Diehl, M., Raabe, D.: DAMASK: the düsseldorf advanced material simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. Procedia IUTAM 3, 3–10 (2012)

    Article  Google Scholar 

  26. DAMASK Homepage. http://www.damask.mpie.de. Last Accessed 29 Aug 2019

  27. Aagesen, L.K., Adams, J.F., Allison, J.E., Andrews, W.B., Berman, T., Chen, Z., Daly, S., Das, S., Dewitt, S., Ganesan, S., Garikapati, K., Gavini, V., Githens, A., Hedstrom, M., Huang, Z., Jagadish, H.V., Motamarri, P., Murphy, A.D., Natarajan, A.R., Panwar, S.: PRSIMS: an integarted, open-source framework for accelerating predictive structural materials science. Miner. Met. Mater. Soc. 70, 2298–2314 (2018)

    Article  Google Scholar 

  28. PRISMS Homepage. http://www.prisms-center.org. Last Accessed 29 Aug 2019

  29. MOOSE Homepage. http://mooseframework.inl.gov. Last Accessed 29 Aug 2019

  30. Groeber, M.A., Jackson, M.A.: DREAM.3D : a digital representation environment for the analysis of microstructure in 3D. Integr. Mat. Manuf. Innov. 3(1), 56–72 (2014)

    Google Scholar 

  31. Dream.3D Homepage, http://dream3d.bluequartz.net. Last Accessed 29 Aug 2019

  32. Neper Homepage. http://neper.sourceforge.net. Last Accessed 29 Aug 2019

  33. Eisenlohr, P., Roters, F., Tjahjanto, D.: A novel grain cluster-based homogenization scheme. Model. Simul. Mater. Sci. Eng. 18(1), 1–21 (2010)

    Google Scholar 

Download references

Acknowledgements

This research work is supported by Technical Education Quality Improvement Project III (TEQIP III) of MHRD, Government of India assisted by World Bank under Grant Number P154523 and sanctioned to UIET, Panjab University, Chandigarh (India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakhwinder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, L., Vohra, S., Sharma, M. (2020). A Brief Overview of Crystal Plasticity Approach for Computational Materials Modeling. In: Prakash, C., Singh, S., Krolczyk, G., Pabla, B. (eds) Advances in Materials Science and Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4059-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4059-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4058-5

  • Online ISBN: 978-981-15-4059-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics