Skip to main content

Influence of the Microstructural and Mechanical Properties of Reinforced Graphene in Magnesium Matrix Fabricated by Friction Stir Processing

  • Conference paper
  • First Online:
Advances in Materials Science and Engineering

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

The aim of the present research work is to find out the influence of uniform dispersion of different volume percentages of graphene nanoparticles into magnesium matrix, fabricated by friction stir processing (FSP). These composites can be used in various applications, particularly in electrical, automobile and aerospace industries due to its lightweight and good electrical and mechanical properties. The friction processed surface of pure magnesium and composites were characterized through X-ray diffraction (XRD). Mechanical properties such as tensile test of the friction stir processed (FSPed) composites were performed in universal testing machine and the specimen was prepared according to standard dimension by wire EDM. The initial properties of the material were compared to the FSPed pure magnesium matrix composites. The role of various volume percentages of reinforcement by FSP resulted in grain refinements as well as improved the mechanical properties of the FSPed composite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mazumdar, S.K.: Composites Manufacturing: Materials, Product, and Process Engineering, 1st edn. CRC Press, Boca Raton (2001)

    Book  Google Scholar 

  2. Girot, F.A., Quenisset, J.M., Naslain, R.: Discontinuously-reinforced aluminum matrix composites. Compos. Sci. Technol. 30(3), 155–184 (1987)

    Article  Google Scholar 

  3. Chou, T.W., Kelly, A., Okura, A.: Fibre-reinforced metal-matrix composites. CompoSites 16(3), 187–206 (1985)

    Article  Google Scholar 

  4. Howes, M.: Ceramic-reinforced MMC fabricated by squeeze casting. JOM 38(3), 28–29 (2016)

    Article  MathSciNet  Google Scholar 

  5. Nardone, V.C., Prewo, K.M.: On the strength of discontinuous silicon carbide reinforced aluminum composites. Scr. Metall. 20(1), 43–48 (1986)

    Article  Google Scholar 

  6. Nutt, S.R.: Defects in silicon carbide whiskers. J. Am. Ceram. Soc. 67(6), 428–431 (1984)

    Article  Google Scholar 

  7. Thomas, W.M.W., Nicholas E.D., Needham, J.C., Murch, M.G., Temple-Smith, P., Dawes, C.J.: Friction stir welding process developments and variant techniques. SME Summit. 1–21 (1991)

    Google Scholar 

  8. Mishra, R.S., Mahoney, M.W., McFadden, S.X., Mara, N.A., Mukherjee, A.K.: High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scr. Mater. 42(2), 163–168 (1999)

    Article  Google Scholar 

  9. Ma, Z.Y., Mishra, R.S., Mahoney, M.W.: Superplastic deformation behavior of friction stir processed 7075 Al alloy. Acta Mater. 50(17), 4419–4430 (2002)

    Article  Google Scholar 

  10. Hofmann, D.C., Vecchio, K.S.: Submerged friction stir processing (SFSP): an improved method for creating ultra-fine-grained bulk materials. Mater. Sci. Eng., A 402(1–2), 234–241 (2005)

    Article  Google Scholar 

  11. Dolatkhah, A., Golbabaei, P., Besharati Givi, M.K., Molaiekiya, F.: Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater. Des. 37, 458–464 (2012)

    Article  Google Scholar 

  12. Mishra, R.S., Mahoney, M.W.: Friction stir Welding and Processing. ASM International, Materials Park, Ohio (2007)

    Google Scholar 

  13. Mishra, R.S., Ma, R.S.: Friction stir welding and processing. Mater. Sci. Eng. R Rep. 50(1–2), 1–78 (2005)

    Article  Google Scholar 

  14. Prakash, C., Singh, S., Ramakrishna, S., Królczyk, G., Le, C.H.: Microwave sintering of porous Ti–Nb-HA composite with high strength and enhanced bioactivity for implant applications. J. Alloy Comp. 824, 153774 (2020)

    Article  Google Scholar 

  15. Prakash, C., Singh, S., Sharma, S., Garg, H., Singh, J., Kumar, H., Singh, G.: Fabrication of aluminium carbon nano tube silicon carbide particles based hybrid nano-composite by spark plasma sintering. Mater. Today Proc. 21, 1637–1642 (2020)

    Google Scholar 

  16. Prakash, C., Singh, S., Pabla, B.S., Sidhu, S.S., Uddin, M.S.: Bio-inspired low elastic biodegradable Mg-Zn-Mn-Si-HA alloy fabricated by spark plasma sintering. Mater. Manuf. Process. 34, 357–368 (2019)

    Article  Google Scholar 

  17. Prakash, C., Singh, S., Gupta, M.K., Mia, M., Królczyk, G., Khanna, N.: Synthesis, characterization, corrosion resistance and in-vitro bioactivity behavior of biodegradable Mg–Zn–Mn–(Si–HA) composite for orthopaedic applications. Mater. 11, 1602 (2018)

    Article  Google Scholar 

  18. Prakash, C., Singh, S., Verma, K., Sidhu, S.S., Singh, S.: Synthesis and characterization of Mg-Zn-Mn-HA composite by spark plasma sintering process for orthopedic applications. Vacuum. 155, 578–584 (2018)

    Article  Google Scholar 

  19. Oh-Ishi, K., McNelley, T.R.: Microstructural modification of as-cast NiAl bronze by friction stir processing. Metall. Mater. Trans. A 35(9), 2951–2961 (2004)

    Article  Google Scholar 

  20. Tsujikawa, M., Somekawa, H., Chung, S.W., Higashi, K.: Development of constitutive equation on superplastic RS P/M Mg-Y-Zn alloy. Mater. Trans. 46(10), 2287–2290 (2005)

    Article  Google Scholar 

  21. Bauri, R., Yadav, D., Suhas, G.: Effect of friction stir processing (FSP) on microstructure and properties of Al-TiC in situ composite. Mater. Sci. Eng. A 528(13–14), 4732–4739 (2011)

    Article  Google Scholar 

  22. Berbon, P.B., Bingel, W.H., Mishra, R.S., Bampton, C.C., Mahoney, M.W.: Friction stir processing: a tool to homogenize nanocomposite aluminum alloys. Scr. Mater. 44(1), 61–66 (2001)

    Article  Google Scholar 

  23. Cavaliere, P.: Mechanical properties of friction stir Processed 2618/Al2O3/20p metal matrix composite. Compos. A Appl. Sci. Manuf. 36(12), 1657–1665 (2005)

    Article  Google Scholar 

  24. Hodder, K.J., Izadi, H., McDonald, A.G., Gerlich, A.P.: Fabrication of aluminum-alumina metal matrix composites via cold gas dynamic spraying at low pressure followed by friction stir processing. Mater. Sci. Eng. A 556, 114–121 (2012)

    Article  Google Scholar 

  25. Morisada, Y., Fujii, H., Mizuno, T., Abe, G., Nagaoka, T., Fukusumi, M.: Modification of thermally sprayed cemented carbide layer by friction stir processing. Surf. Coat. Technol. 204(15), 2459–2464 (2010)

    Article  Google Scholar 

  26. Morisada, Y., Fujii, H., Nagaoka, T., Fukusumi, M.: MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater. Sci. Eng. A 419(1–2), 344–348 (2006)

    Article  Google Scholar 

  27. Lee, C.J., Huang, J.C., Hsieh, P.J.: Mg based nano-composites fabricated by friction stir processing. Scr. Mater. 54(7), 1415–1420 (2006)

    Article  Google Scholar 

  28. Ma, Z.Y., Sharma, S.R., Mishra, R.S.: Effect of multiple-pass friction stir processing on microstructure and tensile properties of a cast aluminum-silicon alloy. Scr. Mater. 54(9), 1623–1626 (2006)

    Article  Google Scholar 

  29. Elangovan, K., Balasubramanian, V., Valliappan, M.: Effect of tool pin profile and tool rotational speed on mechanical properties of friction stir welded AA6061 aluminium alloy. Mater. Manuf. Process. 23(3), 251–260 (2008)

    Article  Google Scholar 

  30. Shafiei-Zarghani, A., Kashani-Bozorg, S.F., Zarei-Hanzaki, A.: Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Mater. Sci. Eng. A 500(1–2), 84–91 (2009)

    Article  Google Scholar 

  31. Yang, M., Xu, C., Wu, C., Lin, K.C., Chao, Y.J., An, L.: Fabrication of AA6061/Al2O3 nano ceramic particle reinforced composite coating by using friction stir processing. J. Mater. Sci. 45(16), 4431–4438 (2010)

    Article  Google Scholar 

  32. Mishra, R.S., Ma, Z.Y., Charit, I.: Friction stir processing: a novel technique for fabrication of surface composite. Mater. Sci. Eng., A 341(1–2), 307–310 (2003)

    Article  Google Scholar 

  33. Mahmoud, E.R.I., Takahashi, M., Shibayanagi, T., Ikeuchi, K.: Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing. Wear 268(9–10), 111–1121 (2010)

    Google Scholar 

  34. Tewari, A., Spowart, J.E., Gokhale, A.M., Mishra, R.S., Miracle, D.B.: Characterization of the effects of friction stir processing on microstructural changes in DRA composites. Mater. Sci. Eng. A 428(1–2), 80–90 (2006)

    Article  Google Scholar 

  35. Wang, W., Shi, Q., Liu, P., ke Li, H. and Li, T.: A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing. J. Mater. Process. Technol. 209(4), 2099–2103 (2009)

    Article  Google Scholar 

  36. Chang, C.I, Wang, Y.N, Pei, H.R., Lee, C.J, Du, X.H., Huang, J.C.: Microstructure and mechanical properties of Nano-ZrO2 and Nano-SiO2 particulate reinforced AZ31-Mg based composites fabricated by friction stir processing. Key Eng. Mater. 351, 114–119 (2007)

    Google Scholar 

  37. Mahmoud, E.R.I., Takahashi, M., Shibayanagi, T., Ikeuchi, K.: Effect of friction stir processing tool probe on fabrication of SiC particle reinforced composite on aluminium surface. Sci. Technol. Weld. Joining 14(5), 413–425 (2009)

    Article  Google Scholar 

  38. Azizieh, M., Kokabi, A. H. and Abachi, P.: Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Mater. Des. 32(4), 2034–2041 (2011)

    Article  Google Scholar 

  39. Dasari, B.L., Morshed, M., Nouri, J.M., Brabazon, D., Naher, S.: Mechanical properties of graphene oxide reinforced aluminium matrix composites. Compos. B Eng. 145, 136–144 (2018)

    Article  Google Scholar 

  40. Asgharzadeh, H., Sedigh, M.: Synthesis and mechanical properties of Al matrix composites reinforced with few-layer graphene and graphene oxide. J. Alloy. Compound. 728, 47–62 (2017)

    Article  Google Scholar 

  41. Liu, J., Khan, U., Coleman, J., Silva, B., Rodriguez, P., Nahar, S., Brabazon, D.: Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: powder synthesis and prepared composite characteristics. Mater. Des. 94, 87–94 (2016)

    Article  Google Scholar 

  42. Huang, J.K., Young, W.B.: The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites. Compos. B Eng. 166, 272–283 (2019)

    Article  Google Scholar 

  43. Mohan, T.P., Kanny, K.: Compressive characteristics of unmodified and nanoclay treated banana fiber reinforced epoxy composite cylinders. Compos. B Eng. 169, 118–125 (2019)

    Article  Google Scholar 

  44. Babbar, A., Sharma, A., Jain, V., Jain, A.K.: Rotary ultrasonic milling of C/SiC composites fabricated using chemical vapor infiltration and needling technique. Mater. Res. Express. 6(8) (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alam, N., Iqbal, M.M., Prakash, C., Singh, S., Basak, A. (2020). Influence of the Microstructural and Mechanical Properties of Reinforced Graphene in Magnesium Matrix Fabricated by Friction Stir Processing. In: Prakash, C., Singh, S., Krolczyk, G., Pabla, B. (eds) Advances in Materials Science and Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4059-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4059-2_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4058-5

  • Online ISBN: 978-981-15-4059-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics