Skip to main content

Functional Analysis of Plant Genes Related to Arbuscular Mycorrhiza Symbiosis Using Agrobacterium rhizogenes-Mediated Root Transformation and Hairy Root Production

  • Chapter
  • First Online:
Hairy Root Cultures Based Applications

Abstract

Arbuscular mycorrhizal symbiosis is a mutualistic endosymbiosis widely distributed in the plant kingdom which has a significant impact on plant growth and health. Agrobacterium rhizogenes-mediated root transformation and composite plant generation have been described as a rapid method to assess gene functions in roots without the need for stable transformation plant production. We describe an optimized protocol for composite tomato plant obtaining achieved through A. rhizogenes-mediated transformation, and we also highlight key differences with other protocols that should be taken into account to adjust this method to the transformation of other plant species. This protocol has been adopted as a useful tool for localizing the promoter expression of genes putatively associated with mycorrhization or for functional analyses in mycorrhizal studies by reverse genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    CAS  Google Scholar 

  • Arthikala MK, Sánchez-López R, Nava N, Santana O, Cárdenas L, Quinto C (2014) RbohB, a Phaseolus vulgaris NADPH oxidase gene, enhances symbiosome number, bacteroid size, and nitrogen fixation in nodules and impairs mycorrhizal colonization. New Phytol 202:886–900

    CAS  PubMed  Google Scholar 

  • Auriac M-C, Timmers AC (2007) Nodulation studies in the model legume Medicago truncatula: advantages of using the constitutive EF1α promoter and limitations in detecting fluorescent reporter proteins in nodule tissues. Mol Plant-Microbe Interact 20:1040–1047

    CAS  PubMed  Google Scholar 

  • Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant-Microbe Interact 14:695–700

    CAS  PubMed  Google Scholar 

  • Boisson-Dernier A, Andriankaja A, Chabaud M, Niebel A, Journet E-P, Barker DG, de Carvalho-Niebel F (2005) MtENOD11 gene activation during rhizobial infection and mycorrhizal arbuscule development requires a common AT-rich-containing regulatory sequence. Mol Plant-Microbe Interact 18:1269–1276

    CAS  PubMed  Google Scholar 

  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324

    CAS  Google Scholar 

  • Chen C, Fan C, Gao M, Zhu H (2009) Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants. Plant Physiol 149:306–317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chilton M-D, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempé J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432–434

    CAS  Google Scholar 

  • Chinnapandi B, Bucki P, Miyara SB (2017) SlWRKY45, nematode-responsive tomato WRKY gene, enhances susceptibility to the root knot nematode; M. javanica infection. Plant Signal Behav 12:e1356530

    PubMed  PubMed Central  Google Scholar 

  • Díaz CL, Grønlund M, Schlaman HR, Spaink HP (2005) Lotus japonicus handbook. Springer, Dordrecht, pp 261–277

    Google Scholar 

  • Diouf D, Gherbi H, Prin Y, Franche C, Duhoux E, Bogusz D (1995) Hairy root nodulation of Casuarina glauca: a system for the study of symbiotic gene expression in an actinorhizal tree. Mol Plant-Microbe Interact 8:532–537

    CAS  PubMed  Google Scholar 

  • Estrada-Navarrete G, Alvarado-Affantranger X, Olivares J-E, Guillén G, Díaz-Camino C, Campos F, Quinto C, Gresshoff PM, Sanchez F (2007) Fast, efficient and reproducible genetic transformation of Phaseolus spp. by Agrobacterium rhizogenes. Nat Protoc 2:1819

    CAS  PubMed  Google Scholar 

  • Etemadi M, Gutjahr C, Couzigou J-M, Zouine M, Lauressergues D, Timmers A, Audran C, Bouzayen M, Bécard G, Combier J-P (2014) Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol 166:281–292

    PubMed  PubMed Central  Google Scholar 

  • Feddermann N, Reinhardt D (2011) Conserved residues in the ankyrin domain of VAPYRIN indicate potential protein-protein interaction surfaces. Plant Signal Behav 6:680–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frenzel A, Tiller N, Hause B, Krajinski F (2006) The conserved arbuscular mycorrhiza-specific transcription of the secretory lectin MtLec5 is mediated by a short upstream sequence containing specific protein binding sites. Planta 224:792–800

    CAS  PubMed  Google Scholar 

  • Genre A, Ivanov S, Fendrych M, Faccio A, Žárský V, Bisseling T, Bonfante P (2011) Multiple exocytotic markers accumulate at the sites of perifungal membrane biogenesis in arbuscular mycorrhizas. Plant Cell Physiol 53:244–255

    PubMed  Google Scholar 

  • Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Péret B, Laplaze L, Franche C (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria. Proc Natl Acad Sci 105:4928–4932

    CAS  PubMed  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Google Scholar 

  • Gobbato E, Marsh JF, Vernié T, Wang E, Maillet F, Kim J, Miller JB, Sun J, Bano SA, Ratet P (2012) A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol 22:2236–2241

    CAS  PubMed  Google Scholar 

  • Gurusamy PD, Schäfer H, Ramamoorthy S, Wink M (2017) Biologically active recombinant human erythropoietin expressed in hairy root cultures and regenerated plantlets of Nicotiana tabacum L. PLoS One 12:e0182367

    PubMed  PubMed Central  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heck C, Kuhn H, Heidt S, Walter S, Rieger N, Requena N (2016) Symbiotic fungi control plant root cortex development through the novel GRAS transcription factor MIG1. Curr Biol 26:2770–2778

    CAS  PubMed  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Commonwealth Agricultural Bureaux

    Google Scholar 

  • Hohnjec N, Perlick AM, Pühler A, Küster H (2003) The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant-Microbe Interact 16:903–915

    CAS  PubMed  Google Scholar 

  • Ho-Plágaro T, Huertas R, Tamayo-Navarrete MI, Ocampo JA, García-Garrido JM (2018) An improved method for Agrobacterium rhizogenes-mediated transformation of tomato suitable for the study of arbuscular mycorrhizal symbiosis. Plant Methods 14:34

    PubMed  PubMed Central  Google Scholar 

  • Ho-Plágaro T, Molinero-Rosales N, Flores DF, Díaz MV, García-Garrido JM (2019) Identification and expression analysis of GRAS transcription factor genes involved in the control of arbuscular mycorrhizal development in tomato. Front Plant Sci 10

    Google Scholar 

  • Iberkleid I, Vieira P, de Almeida Engler J, Firester K, Spiegel Y, Horowitz SB (2013) Fatty acid-and retinol-binding protein, Mj-FAR-1 induces tomato host susceptibility to root-knot nematodes. PloS one 8:e64586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov S, Harrison MJ (2014) A set of fluorescent protein-based markers expressed from constitutive and arbuscular mycorrhiza-inducible promoters to label organelles, membranes and cytoskeletal elements in Medicago truncatula. Plant J 80:1151–1163

    CAS  PubMed  Google Scholar 

  • Jefferson R (1989) The GUS reporter gene system. Nature 342:837

    CAS  PubMed  Google Scholar 

  • Jiang Y, Xie Q, Wang W, Yang J, Zhang X, Yu N, Zhou Y, Wang E (2018) Medicago AP2-domain transcription factor WRI5a is a master regulator of lipid biosynthesis and transfer during mycorrhizal symbiosis. Mol Plant 11:1344–1359

    CAS  PubMed  Google Scholar 

  • Karimi M, Inze D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    CAS  Google Scholar 

  • Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F (2012) Silencing of the Rac1 GTPaseMtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection. Plant Physiol 159:501–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim G-B, Son S-U, Yu H-J, Mun J-H (2019) MtGA2ox10 encoding C20-GA2-oxidase regulates rhizobial infection and nodule development in Medicago truncatula. Sci Rep 9:5952

    PubMed  PubMed Central  Google Scholar 

  • Kobae Y, Hata S (2010) Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Plant Cell Physiol 51:341–353

    CAS  PubMed  Google Scholar 

  • Kosuta S, Held M, Hossain M, Morieri G, MacGillivary A, Johansen C, Antolín-Llovera M, Parniske M, Oldroyd G, Downie A (2011) Lotus japonicus symRK-14 uncouples the cortical and epidermal symbiotic program. Plant J 67:929–940

    CAS  PubMed  Google Scholar 

  • Kryvoruchko IS, Sinharoy S, Torres-Jerez I, Sosso D, Pislariu CI, Guan D, Murray J, Benedito VA, Frommer WB, Udvardi MK (2016) MtSWEET11, a nodule-specific sucrose transporter of Medicago truncatula. Plant Physiol 171:554–565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumagai H, Kouchi H (2003) Gene silencing by expression of hairpin RNA in Lotus japonicus roots and root nodules. Mol Plant-Microbe Interact 16:663–668

    CAS  PubMed  Google Scholar 

  • Kumari M, Chandra S (2017) Secondary metabolite production in transformed cultures: stevioside glycosides production from Stevia rebaudiana hairy root cultures. Transgenesis Second Metab:103–121

    Google Scholar 

  • Lauressergues D, Delaux PM, Formey D, Lelandais-Brière C, Fort S, Cottaz S, Bécard G, Niebel A, Roux C, Combier JP (2012) The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2. Plant J 72:512–522

    CAS  PubMed  Google Scholar 

  • Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R (2004) RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot 55:983–992

    CAS  PubMed  Google Scholar 

  • Liu J, Blaylock LA, Endre G, Cho J, Town CD, VandenBosch KA, Harrison MJ (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Medina A, Pescador L, Fernandez I, Rodríguez-Serrano M, García JM, Romero-Puertas MC, Pozo MJ (2019) Nitric oxide and phytoglobin PHYTOGB 1 are regulatory elements in the Solanum lycopersicum-Rhizophagus irregularis mycorrhizal symbiosis. New Phytol 223:1560–1574

    CAS  PubMed  Google Scholar 

  • Molinero-Rosales N, Martín-Rodríguez JÁ, Ho-Plágaro T, García-Garrido JM (2019) Identification and expression analysis of the arbuscular mycorrhiza-inducible Rieske non-heme oxygenase Ptc52 gene from tomato. J Plant Physiol 237:95–103

    CAS  PubMed  Google Scholar 

  • Mrosk C, Forner S, Hause G, Kuster H, Kopka J, Hause B (2009) Composite Medicago truncatula plants harbouring Agrobacterium rhizogenes-transformed roots reveal normal mycorrhization by Glomus intraradices. J Exp Bot 60:3797–3807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nagahashi G, Douds DD (2000) Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungi. Mycol Res 104:1453–1464

    Google Scholar 

  • Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht MB, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250

    CAS  PubMed  Google Scholar 

  • Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100:463–473

    CAS  Google Scholar 

  • Peters W, Latka I (1986) Electron microscopic localization of chitin using colloidal gold labelled with wheat germ agglutinin. Histochem Cell Biol 84:155–160

    CAS  Google Scholar 

  • Phillips JM, Hayman D (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158IN116–161IN118

    Google Scholar 

  • Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer MJ, Karl L, Floss DS, Harrison MJ, Parniske M (2016) A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching. Curr Biol 26:987–998

    CAS  PubMed  Google Scholar 

  • Pumplin N, Mondo SJ, Topp S, Starker CG, Gantt JS, Harrison MJ (2010) Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant J 61:482–494

    CAS  PubMed  Google Scholar 

  • Quandt HJ, Pühler A, Broer I (1993) Transgenic root nodules of Vicia hirsuta: a fast and efficient system for the study of gene expression in indeterminate-type nodules. Mol Plant-Microbe Interact 6:699–706

    Google Scholar 

  • Rey T, Bonhomme M, Chatterjee A, Gavrin A, Toulotte J, Yang W, André O, Jacquet C, Schornack S (2017) The Medicago truncatula GRAS protein RAD1 supports arbuscular mycorrhiza symbiosis and Phytophthora palmivora susceptibility. J Exp Bot 68:5871–5881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Runo S, Macharia S, Alakonya A, Machuka J, Sinha N, Scholes J (2012) Striga parasitizes transgenic hairy roots of Zea mays and provides a tool for studying plant-plant interactions. Plant Methods 8:20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmülling T, Schell J, Spena A (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7:2621–2629

    PubMed  PubMed Central  Google Scholar 

  • Shimoda Y, Han L, Yamazaki T, Suzuki R, Hayashi M, Imaizumi-Anraku H (2012) Rhizobial and fungal symbioses show different requirements for calmodulin binding to calcium calmodulin–dependent protein kinase in Lotus japonicus. Plant Cell 24:304–321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinharoy S, Pislariu CI, Udvardi MK (2015) A high-throughput RNA interference (RNAi)-based approach using hairy roots for the study of plant–rhizobia interactions. Plant Gene Silencing: Methods and Protocols:159–178

    Google Scholar 

  • Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43

    CAS  Google Scholar 

  • Stewart FC, Rolfs FM, Hall FH (1900) A fruit-disease survey of western New York in 1900. Agricultural Experiment Station, New York

    Google Scholar 

  • Takeda N, Maekawa T, Hayashi M (2012) Nuclear-localized and deregulated calcium-and calmodulin-dependent protein kinase activates rhizobial and mycorrhizal responses in Lotus japonicus. Plant Cell 24:810–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talano MA, Oller ALW, Gonzalez PS, Agostini E (2012) Hairy roots, their multiple applications and recent patents. Recent Pat Biotechnol 6:115–133

    CAS  PubMed  Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    CAS  PubMed  Google Scholar 

  • Trouvelot A (1986) Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une significantion fonctionnelle. Mycorrhizae: Physiol Genet:217–221

    Google Scholar 

  • Tzfira T, Citovsky V (2002) Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 12:121–129

    CAS  PubMed  Google Scholar 

  • Wang E, Schornack S, Marsh JF, Gobbato E, Schwessinger B, Eastmond P, Schultze M, Kamoun S, Oldroyd GE (2012) A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr Biol 22:2242–2246

    CAS  PubMed  Google Scholar 

  • Zhang Q, Blaylock LA, Harrison MJ (2010) Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22:1483–1497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Pumplin N, Ivanov S, Harrison MJ (2015) EXO70I is required for development of a sub-domain of the periarbuscular membrane during arbuscular mycorrhizal symbiosis. Curr Biol 25:2189–2195

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Comisión Interministerial de Ciencia y Tecnología (CICYT) and Fondos Europeos de Desarrollo Regional (FEDER) through the Ministerio de Economía, industria y Competitividad in Spain (AGL2014-52298-P, AGL2017-83871-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel García-Garrido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ho-Plágaro, T., Tamayo-Navarrete, M.I., García-Garrido, J.M. (2020). Functional Analysis of Plant Genes Related to Arbuscular Mycorrhiza Symbiosis Using Agrobacterium rhizogenes-Mediated Root Transformation and Hairy Root Production. In: Srivastava, V., Mehrotra, S., Mishra, S. (eds) Hairy Root Cultures Based Applications. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4055-4_13

Download citation

Publish with us

Policies and ethics