Skip to main content

Cryopreservation and Storage of Oocytes, Embryos and Embryonic Cells of Fish

  • Chapter
  • First Online:
Cryopreservation of Fish Gametes

Abstract

Worldwide hatchery seed production has seen a manifold growth in terms of quantity of seed produced due to advancements in reproductive biotechnology and brood stock management. However, the quality of seed is an important parameter for profitable aquaculture. Both male and female gametes and stored embryos of animals play prominent roles in the genetic management of species and conservation. However, storage by cryopreservation of oocytes or embryos of fish like carps and other teleost is elusive and few claims are not reproducible in nature. Production of improved stock using cryopreserved milt is being practiced in many hatcheries. Male gametes of improved stock are cryopreserved and utilized for quality seed production as well as upgrading the brood stock in carps. However, cryogenic and non-cryogenic storage of oocytes and embryos has not been possible due to several reasons. Researchers have successfully cryopreserved and revived embryonic cells of fish in many laboratories around the world. Here an attempt has been made to describe the principles, practice, issues and way forward in the field of cryopreservation of fish egg (oocytes), embryo and embryonic cells both for long-term and short-term duration storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arii N, Namai K, Fujiya G, Nakazawa T (1987) Cryoprotection of medaka embryos during development. Zool Sci 4:813–818

    Google Scholar 

  • Ashwood-Smith MJ (1986) The cryopreservation of human embryos. Hum Reprod 1(5):319–332

    CAS  PubMed  Google Scholar 

  • Betsy CJ, Stephen J, Kumar S (2014) Potential research leads in cryopreservation of fish gametes. Int J Res Fish Aquac 4(3):108–111

    Google Scholar 

  • Blaxter JHS (1953) Sperm storage and cross-fertilization of spring and autumn spawning herring. Nature 172:1189–1190

    Google Scholar 

  • Bobe J, Labbe C (2010) Egg and sperm quality in fish. Gen Comp Endocrinol 165:535–548

    CAS  PubMed  Google Scholar 

  • Bromage NR, Roberts RJ (1995) Preservation of gametes. In: Bromage NR, Roberts RJ (eds) Brodstock management and egg and larval quality. Blackwell, Oxford, pp 53–75

    Google Scholar 

  • Chao NH, Liao IC (2001) Cryopreservation of finfish and shellfish gametes and embryos. Aquaculture 197:161–189

    Article  Google Scholar 

  • Chao NH, Lin TT, Chen YJ, Hsu HW, Liao IC (1997) Cryopreservation of late embryos and early larvae in the oyster and hard clam. Aquaculture 155:31–44

    CAS  Google Scholar 

  • Chen SL, Tian YS (2005) Cryopreservation of flounder (Paralichthys olivaceus) embryos by vitrification. Theriogenology 63(4):1207–1219. https://doi.org/10.1016/j.theriogenology.2004.06.007

    Article  CAS  PubMed  Google Scholar 

  • Cohen J, Simpsons RF, Fehilly CB, Edwards RG (1986) Factors affecting survival and implementation of cryopreserved human embryos. J In Vitro Fert Embryo Transf 3:46–52

    CAS  PubMed  Google Scholar 

  • Dash SN, Routray P, Dash C, Guru BC, Swain P, Sarangi N (2008) Use of the non-toxic cryoprotectant trehalose enhances recovery and function of embryonic stem cells following cryogenic storage. Curr Stem Cell Res Ther 3:277–287

    CAS  PubMed  Google Scholar 

  • Espinach Ros A, Amutio VG, Arceredillo JM, Orti G, Nani A (1984) Induced breeding of the South American catfish, Rhamdia sapo (C. & V.). Aquaculture 37(2):141–146

    Google Scholar 

  • Fan L, Crodian J, Collodi P (2004) Production of zebrafish germline chimeras by using cultured embryonic stem (ES) cells. Methods Cell Biol 77:113–119

    CAS  PubMed  Google Scholar 

  • Franks F (1982) Water and aqueous solutions at subzero temperatures. In: Franks F (ed) Water a comprehensive treatise, vol 7. Plenum Press, New York, pp 1–334

    Google Scholar 

  • Fujioka T, Yasuchika K, Nakamura Y, Nakatsuji N, Suemori H (2004) A simple and efficient cryopreservation method for primate embryonic stem cells. Int J Dev Biol 48(10):1149–1154

    PubMed  Google Scholar 

  • Guan M, Rawson DM, Zhang T (2008a) Cryopreservation of zebrafish (Danio rerio) oocytes using improved controlled slow cooling protocols. Cryobiology 56(3):204–208. https://doi.org/10.1016/j.cryobiol.2008.03.001

    Article  CAS  PubMed  Google Scholar 

  • Guan M, Rawson DM, Zhang T (2008b) Development of a new method for isolating zebrafish oocytes (Danio rerio) from ovary tissue masses. Theriogenology 69(3):269–275

    CAS  PubMed  Google Scholar 

  • Guan M, Rawson DM, Zhang T (2010) Cryopreservation of zebrafish (Danio rerio) oocytes by vitrification. CryoLetters 31(3):230–238

    CAS  PubMed  Google Scholar 

  • Gwo JC (2000) Cryopreservation of eggs and embryos from aquatic organisms. In: Tiersch TR, Mazik PM (eds) Cryopreservation in aquatic species. World Aquaculture Society, Baton Rouge, pp 211–229

    Google Scholar 

  • Hagedorn M, Kleinhans FW (2000) Problems and prospects in cryopreservation of fish embryos. In: Tiersch TR, Mazik PM (eds) Cryopreservation in aquatic species. World Aquaculture Society, Baton Rouge, pp 161–178

    Google Scholar 

  • Hagedorn M, Kleinhans FW, Freitas R, Liu J, Hsu EW, Wildt DE, Rall WF (1997) Water distribution and permeability of zebrafish embryos, Brachydanio rerio. J Exp Zool 278:356–371

    CAS  PubMed  Google Scholar 

  • Harvey B (1983) Cooling of embryonic cells, isolated blastoderms, and intact embryos of the zebra fish, Brachydanio rerio to −196°C. Cryobiology 20:440–447

    CAS  PubMed  Google Scholar 

  • Harvey B, Ashwood-Smith MJ (1982) Cryoprotectant penetration and supercooling in the eggs of salmonid fishes. Cryobiology 19:29–40

    CAS  PubMed  Google Scholar 

  • Harvey B, Kelley RN (1985) Short-term storage of Sarotherodon mossambicus ova. Aquaculture 37:391–395

    Google Scholar 

  • Harvey B, Kelley RN, Ashwood-Smith MJ (1982) Cryopreservation of zebrafish spermatozoa using methanol. Can J Zool 60:1867–1870

    CAS  Google Scholar 

  • Heng BC, Kuleshova LL, Bested SM, Liu H, Cao T (2005) The cryopreservation of human embryonic stem cells. Biotechnol Appl Biochem 41(2):97

    CAS  PubMed  Google Scholar 

  • Heng BC, Ye CP, Liu H, Toh WS, Rufaihah AJ, Cao T (2006) Kinetics of cell death of frozen-thawed human embryonic stem cell colonies is reversibly slowed down by exposure to low temperature. Zygote 14(4):341–348

    CAS  PubMed  Google Scholar 

  • Hurst T, Shafir E, Lancaster P (1997) Assisted conception in Australia and New Zealand 1996. Assisted conception series number 3. AIHW National Perinatal Statistics Unit, Sydney, pp 1–71. ISSN 1038-7234

    Google Scholar 

  • Husen MA, Sharma S (2015) Immersion of rohu fingerlings in clove oil reduced handling and confinement stress and mortality. Int J Fish Aquatic Stud 2(6):299–305

    Google Scholar 

  • Ichikawa H, No H, Takei S, Takashimizu I, Yue F, Cui L, Ogiwara N, Johkura K, Nishimoto Y, Sasaki K (2007) Cryopreservation of mouse embryoid bodies. Cryobiology 54(3):290–293

    CAS  PubMed  Google Scholar 

  • Isayeva A, Zhang T, Rawson DM (2004) Studies on chilling sensitivity of zebrafish (Danio rerio) oocytes. Cryobiology 49(2):114–122. https://doi.org/10.1016/j.cryobiol.2004.05.005

    Article  PubMed  Google Scholar 

  • Islam MN, Hossain MA (2013) Mortality rate of fish seeds (Labeo rohita) during traditional transportations system in the Northwest Bangladesh. J Sci Res 5(2):383–392

    CAS  Google Scholar 

  • Janik M, Kleinhans FW, Hagedorn M (2000) Overcoming a permeability barrier by microinjecting cryoprotectants into zebrafish embryos (Brachydanio rerio). Cryobiology 41(1):25–34

    CAS  PubMed  Google Scholar 

  • Janik M, Kleinhans FW, Hagedorn M (2000a) Microinjection of cryoprotectants into the yolk of zebrafish embryos (Brachydanio rerio). Biol Reprod 62:146–146

    Google Scholar 

  • Karlsson JO, Eroglu A, Toth TL, Cravalho EG, Toner M (1996) Fertilization and development of mouse oocytes cryopreserved using a theoretically optimized protocol. Hum Reprod 11:1296–1305

    CAS  PubMed  Google Scholar 

  • Kawai H, Sakurai M, Inoue Y, Chujo R, Kobayashi S (1992) Hydration of oligosaccharides: anomalous hydration ability of trehalose. Cryobiology 29(5):599–606

    CAS  PubMed  Google Scholar 

  • Khosla K, Wang Y, Hagedorn M, Qin Z, Bischof J (2017) Gold nanorod induced warming of embryos from the cryogenic state enhances viability. ACS Nano 11(8):7869–7878. https://doi.org/10.1021/acsnano.7b02216

    Article  CAS  PubMed  Google Scholar 

  • Konc J, Kanyó K, Kriston R, SomoskÅ‘i B, Cseh S. (2014). Cryopreservation of embryos and oocytes in human assisted reproduction. New Adv Rep Biomed. (Special Issue), Biomed Res Int. 2014;2014:307268. https://doi.org/10.1155/2014/307268

  • Kusuda S, Teranishi T, Koide N (2002) Cryopreservation of chum salmon blastomeres by the straw method. Cryobiology 45(1):60–67. https://doi.org/10.1016/S0011-2240(02)00106-2

    Article  CAS  PubMed  Google Scholar 

  • Kusuda S, Teranishi T, Koide N, Nagai T, Arai K, Yamaha E (2004) Pluripotency of cryopreserved blastomeres of the goldfish. J Exp Zool A Comp Exp Biol 301:131–138. https://doi.org/10.1002/jez.a.20017

    Article  PubMed  Google Scholar 

  • Lahnsteiner F (2000) Morphological, physiological and biochemical parameters characterizing the overripening of rainbow trout eggs. Fish Physiol Biochem 23:107–118

    CAS  Google Scholar 

  • Legendre M, Slembrouck J, Subagja J, Kristanto AH (2000) Ovulation rate, latency period and ova viability after GnRH- or hCG-induced breeding in the Asian catfish Pangasius hypophthalmus (Siluriforme, Pangasiidae). Aquat Living Resour 13:145–151

    Google Scholar 

  • Leung LKP, Jamieson BGM (1991) Live preservation of fish gametes. In: Jamieson BGM (ed) Fish evolution and systematics: evidence from spermatozoa. Cambridge University Press, Cambridge, pp 245–269

    Google Scholar 

  • Leveroni Calvi S, Maisse G (1998) Cryopreservation of rainbow trout (Oncorhynchus mykiss) blastomeres: influence of embryo stage on postthaw survival rate. Cryobiology 36(4):255–262

    Google Scholar 

  • Lin J, de Pablo JJ, Palecek SP (2004) Cryopreservation of adherent human embryonic stem cells. Biotechnol Bioeng 88(3):299–312

    Google Scholar 

  • Liu KC, Chou TC, Lin HD (1993) Cryosurvival of goldfish embryo after subzero freezing. Aquat Living Resour 6:63–66

    Google Scholar 

  • Liu XH, Zhang T, Rawson DM (2000) DSC studies on characterization of intraembryonic freezing and cryoprotectant penetration in zebrafish embryos. Cryobiology, (Abstract-71, presented in 37th annual meeting), p 355

    Google Scholar 

  • Lovelock JE (1953) The mechanisms of the protective action of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta 11:28–36

    CAS  PubMed  Google Scholar 

  • Marques LS, Fossati AA, Rodrigues RB, Da Rosa HT, Izaguirry AP, Ramalho JB, Moreira JC, Santos FW, Zhang T, Streit DP (2019) Slow freezing versus vitrification for the cryopreservation of zebrafish (Danio rerio) ovarian tissue. Sci Rep 9(1):1–1. https://doi.org/10.1038/s41598-019-51696-7

    Article  CAS  Google Scholar 

  • Mazur P (1965) Causes of injury in frozen and thawed cells. Fed Proc 24(Suppl):S175–S182

    CAS  PubMed  Google Scholar 

  • Mazur P (1977) The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology 14:251–272

    CAS  PubMed  Google Scholar 

  • Meryman HT, Williams RJ, Douglas MS (1977) Freezing injury from ‘solution effect’ and its prevention by natural or artificial cryoprotection. Cryobiology 14:287–302

    CAS  PubMed  Google Scholar 

  • Mishra G, Patra S, Dash SK, Verma DK, Routray P (2017) In vitro storage of fish oocytes: effect of storage temperature, media conditions and storage duration on fertilization and larval hatchability of Indian major carp, rohu (Labeo rohita). Aquac Res 48(5):2486–2494

    CAS  Google Scholar 

  • Nilsson E, Cloud JG (1993) Cryopreservation of rainbow trout (Oncorynchus mykiss) blastomeres. Aquat Living Resour 6:77–80

    Google Scholar 

  • Nomura M, Sakai K, Takashima F (1974) The over-ripening phenomenon of rainbow trout. I. Temporal morphological changes of eggs retained in the body cavity after ovulation. Bull Jpn Soc Sci Fish 40:977–984

    Google Scholar 

  • O’Neil L, Paynter SJ, Fuller BJ, Shaw RW (1997) Vitrification of mature mouse oocytes: improved results following addition of polyethylene glycol to a dimethyl sulphoxide solution. Cryobiology 34:295–301

    PubMed  Google Scholar 

  • Plachinta M, Zhang T, Rawson DM (2004) Studies on cryoprotectant toxicity to zebrafish (Danio rerio) oocytes. CryoLetters 25(6):415–424

    CAS  PubMed  Google Scholar 

  • Polge C, Smith AU, Parkes AS (1949) Revival of sprmatozoa after vitrification and dehydration at low temperatures. Nature 164:1–666

    Google Scholar 

  • Rall WF (1993) In: Cloud JG, Thorgaard GH (eds) Genetic conservation of salmonid fishes. Plenum Press, NewYork, p 137

    Google Scholar 

  • Rall WF, Fahy GM (1985) Ice free cryopreservation of mouse embryos at −196 °C by vitrification. Nature 313:573–575

    CAS  PubMed  Google Scholar 

  • Rall WF, Mazur P, McGrath JJ (1983) Depression of the ice nucleation temperature of rapidly cooled mouse embryos by glycerol and dimethyl sulfoxide. Biophys J 41:1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rana K (1995) Preservation of gametes. In: Bromage NR, Roberts RJ (eds) Broodstock management and egg and larval quality. Blackwell Science, Oxford, pp 25–52

    Google Scholar 

  • Reid DS (1993) Basic physical phenomena in the freezing and thawing of plant and animal tissues. In: Mallett CP (ed) Frozen food technology. Blackie Academic and Professional, Glasgow, pp 1–19

    Google Scholar 

  • Reubinoff BE, Pera MF, Vajta G, Trounson AO (2001) Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod 16(10):2187–2194

    CAS  PubMed  Google Scholar 

  • Rizzo E, Godinho HP, Sato Y (2003) Short-term storage of oocytes from the neotropical teleost fish Prochilodus marggravii. Theriogenology 60(6):1059–1070. https://doi.org/10.1016/S0093-691X(03)00108-0

    Article  PubMed  Google Scholar 

  • Routray P, Suzuki T, Kimizuka N, Kawai K, Strüssmann CA, Takai R (2001) Cold tolerance and ice nucleation temperature of medaka (Oryzias latipes) embryos with different cryoprotectant treatments. Cryobiol Cryotechnol 47(2):69–74

    Google Scholar 

  • Routray P, Suzuki T, Strüssmann CA, Takai R (2002a) Factors affecting the uptake of cryoprotective agents by fish eggs and embryos. Fish Sci 68:965–966. https://doi.org/10.2331/fishsci.68.sup1_965

  • Routray P, Suzuki T, Strüssmann CA, Takai R (2002b) Factors affecting the uptake of DMSO by the eggs and embryos of medaka, Oryzias latipes. Theriogenology 58:1483–1496. https://doi.org/10.1016/S0093-691X(02)01076-2

    Article  CAS  PubMed  Google Scholar 

  • Routray P, Gupta SD, Behera MK (2003) Cryogenics in fish hatchery technology. Fish Chimes 23:7–9

    Google Scholar 

  • Routray P, Dash SN, Dash C, Swain P, Sarkar SK, Sarangi N (2008) Cryopreservation of silver barb Puntius gonionotus (Bleeker) spermatozoa: effect of extender composition, cryoprotective agents and freezing rate on their post thawing fertilization ability. Aquac Res 39:1597–1605

    Google Scholar 

  • Routray P, Dash C, Dash SN, Tripathy S, Verma DK, Swain SK, Swain P, Guru BC (2009) Cryopreservation of isolated blastomeres and embryonic stem-like cells of Leopard danio, Brachydanio frankei. Aquac Res 41(4):579–589. https://doi.org/10.1111/j.1365-2109.2009.02456.x

  • Sahagian ME, Goff HD (1996) Fundamental aspects of the freezing process. In: Jeremiah LE (ed) Freezing effects on food quality. Marcel Dekker Inc., New York, pp 1–50

    Google Scholar 

  • Sahu AD, Bhol C, Routray P, Sundaray JK (2011) Cryopreservation of male gonads of carps, Labeo calbasu and Labeo rohita for long term storage and its utilization in aquaculture. Indian J Sci Technol. 9th ISRPF issue;4:308–309

    Google Scholar 

  • Schreuders PD, Smith ED, Cole KW, Laughinghouse A, Mazur P (1996) Characterization of intraembryonic freezing in Anopheles gambiae embryos. Cryobiology 33(5):487–501. https://doi.org/10.1006/cryo.1996.9999

    Article  CAS  PubMed  Google Scholar 

  • Steponkus PL, Myers SP, Lynch DV, Gardner L, Bronshteyn V, Leibo SP, Rall WF, Pitt RE, Lin TT, Maclntyre RJ (1990) Cryopreservation of Drosophila melanogaster embryos. Nature 345(6271):170–172

    CAS  PubMed  Google Scholar 

  • Strüssmann CA, Nakatsugawa H, Takashima F, Hasobe M, Suzuki T, Takai R (1999) Cryopreservation of isolated fish blastomeres: effects of cell stage, cryoprotectant concentration, and cooling rate on postthawing survival. Cryobiology 39:252–261

    PubMed  Google Scholar 

  • Suzuki T, Komada H, Takai R, Arii K, Kozima TT (1995) Relation between toxicity of cryoprotectant DMSO and its concentration in several fish embryos. Fish Sci 61:193–197

    CAS  Google Scholar 

  • Toldeo JD, Kurokura H (1990) Cryopreservation of the euryhaline rotifer Brachionus plicatilis embryos. Aquaculture 91:385–394

    Google Scholar 

  • Tripathy S, Dash C, Routray P (2012) In vitro differentiation ability of post-thawed blastomeres derived from early blastula stage embryos of Indian major carp, Cirrhinus mrigala (Ham.). e-planet 10(2):25–29

    Google Scholar 

  • Tsai S, Yen W, Chavanich S, Viyakarn V, Lin C (2015) Development of cryopreservation techniques for gorgonian (Junceella juncea) oocytes through vitrification. PLoS One 10:e0123409. https://doi.org/10.1371/journal.pone.0123409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbányi B, Magyary I, Horváth A, Baranyai B, Dinnyés A (2000) Cryopreservation of sperm and eggs of sharptooth catfish. In: Tiersch TR, Mazik PM (eds) Cryopreservation in aquatic species. World Aquaculture Society, Baton Rouge, pp 88–198

    Google Scholar 

  • Veron P, Vannier G, Luce JM (1997) Decrease of supercooling capacity during embryogenesis and larval growth in coleoptera. C R Acad Sci III 320(5):359–366

    Google Scholar 

  • Whittingham DG, Leibo SP, Mazur P (1972) Survival of mouse embryos frozen to −196 °C to-296 °C. Science 178:411–414

    CAS  PubMed  Google Scholar 

  • Wilmut I (1972) The effects of cooling rate, warming rate, cryoprotective agent and stage of development on survival of mouse embryos during freezing and thawing. Life Sci 11:1071–1079

    CAS  Google Scholar 

  • Zell RPS (1978) Cryopreservation of gametes and embryos of salmonid fishes. Ann Biol Anim Biophys 18:1089–1099

    CAS  Google Scholar 

  • Zhang T, Rawson DM (1995) Studies on chilling sensitivity of zebrafish (Brachydanio rerio) embryos. Cryobiology 32:239–246

    Google Scholar 

  • Zhang T, Rawson DM (1996) Feasibility studies on vitrification of intact zebrafish (Brachydanio rerio) embryos. Cryobiology 33:1–13

    Google Scholar 

  • Zhang T, Rawson DM, Pekarsky I, Blais I, Esther L (2007) Low-temperature preservation of fish gonad cells and oocytes. In: Babin PJ, Cerda J, Lubzens E (eds) The fish oocyte from basic studies to biotechnological applications. Springer, New York, pp 411–436

    Google Scholar 

  • Zhou CQ, Mai QY, Li T, Zhuang GL (2004) Cryopreservation of human embryonic stem cells by vitrification. Chin Med J 117(7):1050–1055

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Routray, P. (2020). Cryopreservation and Storage of Oocytes, Embryos and Embryonic Cells of Fish. In: Betsy, J., Kumar, S. (eds) Cryopreservation of Fish Gametes. Springer, Singapore. https://doi.org/10.1007/978-981-15-4025-7_13

Download citation

Publish with us

Policies and ethics