Skip to main content

Short-Term Hydrothermal Scheduling Using Bio-inspired Computing: A Review

  • Chapter
  • First Online:
Nature Inspired Optimization for Electrical Power System

Abstract

Short-term hydrothermal scheduling (SHTS) problem comprises of scheduling together several hydro and thermal generation units such that objectives such as cost, emission, etc., can be optimized. Normally, the objective of SHTS is to minimize the fuel cost of the thermal units over a certain time of period while satisfying different operating constraints associated with thermal and hydro systems. Due to complex, nonlinear, multimodal and/or discontinuous nature of objective function, various bio-inspired optimization methods have been proposed to obtain the optimal dispatch solution for the hydrothermal systems of different dimensions and complexity levels. This chapter attempts to present a detailed review of the numerous bio-inspired optimization algorithms employed over the last two decades to solve the short-term SHT scheduling problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(F_{mt}\) :

Cost of generation of mth thermal plant at ‘t’

\(P_{mt}^{s}\) :

Power generation of mth thermal unit at time ‘t’

\(a_{m} , b_{m} , c_{m} , e_{m} , f_{m}\) :

Fuel cost coefficients of mth unit

\(N_{s}\) :

Number of thermal power generation units

\(P_{\text{load}} \left( t \right)\) :

Total load demand at time ‘t’

\(P_{mt}^{s} ,P_{nt}^{h}\) :

Power generation of thermal and hydro units at time ‘t’

\(P_{\text{loss}} \left( t \right)\) :

Total transmission losses of the system at time ‘t’

\(C_{1n} ,C_{2n} ,C_{3n} ,C_{4n} ,C_{5n} ,C_{6n}\) :

Coefficients of n hydro unit

\(V_{n} t^{h} ,Q_{n} t^{h}\) :

Volume and discharge of nth hydro unit at time ‘t’

\(P_{{(n , {\text{min}})}}^{h} ,P_{{(n , {\text{max}})}}^{h}\) :

Min. and max. power generation values of nth hydro unit

\(P_{{(m , {\text{min}})}}^{s} ,P_{{(m , {\text{max}})}}^{s}\) :

Min. and max. power generation values of mth thermal unit

\(V_{{(m , {\text{min}})}}^{h} ,V_{{(m , {\text{max}})}}^{h}\) :

Min. and max. values of reservoir volume of mth hydro plant

\(Q_{{(m , {\text{min}})}}^{h} ,Q_{{(m , {\text{max}})}}^{h}\) :

Min. and max. values of water discharge of mth hydro plant

\(V_{m0}^{h} ,V_{m24}^{h}\) :

Reservoir volume of mth hydro unit at time zero and twenty-four

\(V_{{(m , {\text{min}})}}^{h} ,V_{{(m , {\text{end}})}}^{h}\) :

Initial and final reservoir volume of mth hydro unit

HP:

Hydro plants

TP:

Thermal Plant

References

  1. Kumar S, Naresh R (2007) Efficient real coded genetic algorithm to solve the non-convex hydrothermal scheduling problem. Electr Power and Energy Syst 29:738–747

    Article  Google Scholar 

  2. Gil E, Bustos J, Rudnick H (2003) Short-term hydrothermal generation scheduling model using a genetic algorithm. IEEE Trans Power Syst 18(4):1256–1264

    Article  Google Scholar 

  3. Catalao JPS, Pousinho HMI, Mendes VMF (2011) Hydro energy systems management in Portugal: profit-based evaluation of a mixed-integer nonlinear approach. Energy 36:500–507

    Article  Google Scholar 

  4. Catalao JPS, Mariano SJPS, Mendes VMF, Ferreira LAFM (2009) Scheduling of head-sensitive cascaded hydro systems: a nonlinear approach. IEEE Trans Power Syst 24(1):337–346

    Article  Google Scholar 

  5. Chang GW, Aganagic M, Waight JG, Medina J, Burton T, Reeves S, Christoforidis M (2001) Experiences with mixed integer linear programming based approaches on short-term hydro scheduling. IEEE Trans Power Syst 16(4):743–749

    Article  Google Scholar 

  6. Dos Santos TN, Diniz AL (2009) A new multi period stage definition for the multistage benders decomposition approach applied to hydrothermal scheduling. IEEE Trans Power Syst 24(3):1383–1392

    Article  Google Scholar 

  7. Sifuentes WS, Vargas A (2007) Hydrothermal scheduling using benders decomposition: accelerating techniques. IEEE Trans Power Syst 22(3):1351–1359

    Article  Google Scholar 

  8. Homem-de-Mello T, de Matos VL, Finardi EC (2011) Sampling strategies and stopping criteria for stochastic dual dynamic programming: a case study in long-term hydrothermal scheduling. Energy Systems 2(1):1–3

    Article  Google Scholar 

  9. Dieu VN, Ongsakul W (2009) Improved merit order and augmented Lagrange Hopfield network for short-term hydrothermal scheduling. Energy Convers Manag 50:3015–3023

    Article  Google Scholar 

  10. Yamin HY (2004) Review on methods of generation scheduling in electric power systems. Electr Power Syst Res 69:227–248

    Article  Google Scholar 

  11. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  12. Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  Google Scholar 

  13. Ya X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evolut Comput 3:82–102

    Article  Google Scholar 

  14. Yang XS, Deb S (2009) Cuckoo search via lévy flights, in proc. World Congress on Nature & Biologically Inspired Computing 210–214

    Google Scholar 

  15. Yang XS (2012) Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation 2012, Lecture Notes in Computer Science, vol 7445, pp 240–249

    Google Scholar 

  16. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  Google Scholar 

  17. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, IV, pp 1942–1948

    Google Scholar 

  18. Karaboga D (2005) An idea based on honeybee swarm for numerical optimization (Tech.Rep. TR06), Erciyes University, Engineering Faculty, Computer Engineering Department

    Google Scholar 

  19. Dubey HM, Pandit M, Panigrahi BK (2018) An overview and comparative analysis of recent bio-inspired optimization techniques for wind integrated multi-objective power dispatch. Swarm Evol Comput 38:12–34

    Article  Google Scholar 

  20. Labadie JW (2004) Optimal operation of multi reservoir systems: state-of-the-art review. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:2(93)

  21. Bisht VS (2012) Genetic algorithm solution for convex hydro-thermal generation scheduling problem. https://doi.org/10.1109/PowerI.2012.6479532

  22. Yu B, Yuan X, Wang J (2007) Short-term hydro-thermal scheduling using particle swarm optimization method. Energy Convers Manag 48:1902–1908

    Article  Google Scholar 

  23. Amjady N, Soleymanpour HR (2010) Daily hydrothermal generation scheduling by a new modified adaptive particle swarm optimization technique. Electr Power Syst Res 80:723–732

    Article  Google Scholar 

  24. Rasoulzadeh-akhijahani A, Mohammadi-ivatloo B (2015) Short-term hydrothermal generation scheduling by modified dynamic neighborhood learning based particle swarm optimization. Electr Power Energy Syst 67:350–367

    Article  Google Scholar 

  25. Wu Y, Wu Y, Liu X (2019) Couple-based particle swarm optimization for short-term hydrothermal scheduling. Appl Soft Comput J 74:440–450

    Article  Google Scholar 

  26. Wang Y, Zhou J, Mo L, Yang S, Zhang Y (2012) A clonal real-coded quantum-inspired evolutionary algorithm with Cauchy mutation for short-term hydrothermal generation scheduling. Electr Power Energy Syst 43:1228–1240

    Google Scholar 

  27. Wang Y, Zhou J, Mo L, Zhang R, Zhang Y (2012) Short-term hydrothermal generation scheduling using differential real-coded quantum-inspired evolutionary algorithm. Energy 44:657–671

    Article  Google Scholar 

  28. Liao X, Zhou J, Yang S, Zhang R, Zhang Y (2013) An adaptive chaotic artificial bee colony algorithm for short-term hydrothermal generation scheduling. Electr Power Energy Syst 53:34–42

    Google Scholar 

  29. Roy PK (2013) Teaching learning based optimization for short-term hydrothermal scheduling problem considering valve point effect and prohibited discharge constraint. Electr Power Energy Syst 53:10–19

    Article  Google Scholar 

  30. Pasupulati B, Kumar RA, Asokan K (2017) An effective methodology for short-term generation scheduling of hydrothermal power system using improved TLBO algorithm. https://doi.org/10.1109/ICIEEIMT.2017.8116842

  31. Fang N, Zhou J, Zhang R, Liu Y, Zhang Y (2014) A hybrid of real coded genetic algorithm and artificial fish swarm algorithm for short-term optimal hydrothermal scheduling. Electr Power Energy Syst 62:617–629

    Article  Google Scholar 

  32. Mandal KK, Basu M, Chakraborty N (2008) Particle swarm optimization technique based short-term hydrothermal scheduling. Appl Soft Comput 8:1392–1399

    Article  Google Scholar 

  33. Mandal KK, Chakraborty N (2013) Parameter study of differential evolution based optimal scheduling Of hydrothermal systems. J Hydro-Environ Res 7:72–80

    Article  Google Scholar 

  34. Basu M (2014) Improved differential evolution for short-term hydrothermal scheduling. Electr Power Energy Syst 58:91–100

    Article  Google Scholar 

  35. Sivasubramani S, Swarup KS (2011) Hybrid DE–SQP algorithm for non-convex short-term hydrothermal scheduling problem. Energy Convers Manag 52:757–761

    Article  Google Scholar 

  36. Basu, M (2014) Artificial bee colony optimization for short-term hydrothermal scheduling. J Inst Eng (India): Ser B 95(4):319–328

    Google Scholar 

  37. Gouthamkumar N, Sharma V, Naresh R (2015) Hybridized gravitational search algorithm for short-term hydrothermal scheduling. IETE J Res. https://doi.org/10.1080/03772063.2015.1083904:468-478

    Article  Google Scholar 

  38. Dubey HM, Panigrahi BK, Pandit M (2015) Improved flower pollination algorithm for short term hydrothermal scheduling. Lect Notes Comput Sci 8947:721–737. https://doi.org/10.1007/978-3-319-20294-5_62

  39. Orero SO, Irving MR (1998) A genetic algorithm modeling framework and solution technique for short-term optimal hydrothermal scheduling. IEEE Trans Power Syst 13(2):501–518

    Article  Google Scholar 

  40. Lakshminarasimman L, Subramanian S (2006) Short-term scheduling of hydrothermal power system with cascaded reservoirs by using modified differential evolution. In: IEE proceedings—generation, transmission and distribution, vol 153(6), pp 693–700. https://doi.org/10.1049/ip-gtd:20050407

  41. Lakshminarasimman L, Subramanian S (2008) A modified hybrid differential evolution for short-term scheduling of hydrothermal power systems with cascaded reservoirs. Energy Convers Manag 49:2513–2521

    Article  Google Scholar 

  42. Nguyen TT, Vo DN, Dao TT (2014) Cuckoo search algorithm using different distributions for short-term hydrothermal scheduling with cascaded hydropower plants. https://doi.org/10.1109/TENCON.2014.7022454

  43. Hota PK, Barisal AK, Chakrabarti R (2009) An improved PSO technique for short-term optimal hydrothermal scheduling. Electr Power Syst Res 79:1047–1053

    Article  Google Scholar 

  44. Chang W (2010) Optimal scheduling of hydrothermal system based on improved particle swarm optimization. https://doi.org/10.1109/APPEEC.2010.5448307

  45. Sinha N, Chakrabarti R, Chattopadhyay PK (2003) Fast evolutionary programming techniques for short-term hydrothermal scheduling. IEEE Trans Power Syst 18(1):214–220

    Article  Google Scholar 

  46. Bhattacharya A, Bhattacharya A, Datta S, Basu M (2013) Gravitational search algorithm optimization for short-term hydrothermal scheduling. https://doi.org/10.1109/ICETEEEM.2012.6494479

  47. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Article  Google Scholar 

Download references

Acknowledgements

The financial support provided by AICTE-RPS project File No. 8-36/RIFD/RPS/POLICY-1/2016–17 dated 2.9.2017 and TEQIP III is sincerely acknowledged. Thanks are also due to the Director and management of MITS, Gwalior, India, for providing facilities and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khushboo Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, K., Dubey, H.M., Pandit, M. (2020). Short-Term Hydrothermal Scheduling Using Bio-inspired Computing: A Review. In: Pandit, M., Dubey, H., Bansal, J. (eds) Nature Inspired Optimization for Electrical Power System. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-4004-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4004-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4003-5

  • Online ISBN: 978-981-15-4004-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics