Skip to main content

Mixed-Integer Differential Evolution Algorithm for Optimal Static/Dynamic Scheduling of a Microgrid with Mixed Generation

  • Chapter
  • First Online:
Nature Inspired Optimization for Electrical Power System

Abstract

The objective of dispatching generating units in electrical power supply system is to compute an optimal generation schedule to minimize the cost without violating the operating limits. Earlier, this problem comprised mainly of fossil fuel generating units. Now, the system complexity increases due to the widespread involvement of large number of renewable distributed energy resources (DERs) which are random, uncertain and introduce discrete variables in the objective function. This chapter presents a static and dynamic optimal scheduling model for a microgrid comprising of diesel generators (DG), microturbine (Mt), wind turbine and solar photovoltaic (PV) plant. A mixed-integer differential evolution (MIDE) algorithm with continuous as well as binary variables is used to solve the optimal dispatch problem with various equality, inequality and binding dynamic constraints. The developed model is tested on a modified five DER microgrid, and its performance is validated by using binary PSO and existing results from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marnay C, Venkataramanan G, Stadler M, Siddiqui A, Firestone R, Chandran B (2008) Optimal technology selection and operation of microgrids in commercial buildings. IEEE Trans Power Syst 23:975–982

    Article  Google Scholar 

  2. Hanna R, Ghonima M, Kleissl J, Tynan G, Victor DG (2017) Evaluating business models for microgrids: Interactions of technology and policy. Energy Policy 103:47–61

    Article  Google Scholar 

  3. Basu AK, Bhattacharya A, Chowdhury S, Chowdhury SP (2012) Planned scheduling for economic power sharing in a CHP-based micro-grid. IEEE Trans Power Syst 27:30–38

    Article  Google Scholar 

  4. Hemmati M, Amjady N, Ehsan M (2014) System modeling and optimization for islanded micro-grid using multi-cross learning-based chaotic differential evolution algorithm. Int J Electr Power Energy Syst 56:349–360

    Article  Google Scholar 

  5. Rabiee A, Sadeghi M, Aghaei J (2018) Modified imperialist competitive algorithm for environmental constrained energy management of microgrids. J Clean Prod 202:273–292

    Article  Google Scholar 

  6. Zhang J, Wu Y, Guo Y, Wang B, Wang H, Liu H (2016) A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints. Appl Energy 183:791–804

    Article  Google Scholar 

  7. Barnes AK, Balda JC, Escobar-Mejia A (2015) A semi-markov model for control of energy storage in utility grids and microgrids with PV generation. IEEE Trans Sustain Energy 6:546–556

    Article  Google Scholar 

  8. Roy K, Krishna K, Chandra A (2016) Modeling and managing of micro grid connected system using improved artificial bee colony algorithm. Int J Electr Power Energy Syst 75:50–58

    Article  Google Scholar 

  9. Elsied M, Oukaour A, Youssef T, Gualous H, Mohammed O (2016) An advanced real time energy management system for microgrids. Energy 114:742–752

    Article  Google Scholar 

  10. Li P, Han P, He S, Wang X (2017) Double-uncertainty optimal operation of hybrid AC/DC microgrids with high proportion of intermittent energy sources. J Mod Power Syst Clean Energy 5:838–849

    Article  Google Scholar 

  11. Lúcia HLL, Leandro VRA, Julio M (2018) Optimization of Grid-Tied microgrids under binomial differentiated tariff and net metering policies: a Brazilian case study. J Control Autom Electr Syst. https://doi.org/10.1007/s40313-018-0403-x

    Article  Google Scholar 

  12. Gil-gonzález W, Danilo O, Holguín E, Garces A, Grisales-noreña LF (2019) Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J Energy Storage 21:1–8

    Article  Google Scholar 

  13. Heris FN, Mohammadi B, Nazarpour D (2019) Economic dispatch of renewable energy and CHP—based multi-zone microgrids under limitations of electrical network. Iran J Sci Technol Trans Electr Eng. https://doi.org/10.1007/s40998-019-00208-4

    Article  Google Scholar 

  14. Hetzer J, Yu DC, Bhattarai K (2008) An economic dispatch model incorporating wind power. IEEE Trans Energy Convers 23:603–611

    Article  Google Scholar 

  15. Mohan H, Pandit M, Panigrahi BK (2015) Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch. Renew Energy 83:188–202

    Article  Google Scholar 

  16. Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. International Computer Science Institute, Berkeley, CA, Technical Report TR-95–012

    Google Scholar 

  17. Khan NA, Awan AB, Mahmood A, Razzaq S, Zafar A, Sidhu GAS (2015) Combined emission economic dispatch of power system including solar photo voltaic generation. Energy Convers Manag 92:82–91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, S., Pandit, M. (2020). Mixed-Integer Differential Evolution Algorithm for Optimal Static/Dynamic Scheduling of a Microgrid with Mixed Generation. In: Pandit, M., Dubey, H., Bansal, J. (eds) Nature Inspired Optimization for Electrical Power System. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-4004-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4004-2_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4003-5

  • Online ISBN: 978-981-15-4004-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics