Skip to main content

Design for Reliability of Solder Joints

  • Chapter
  • First Online:
Assembly and Reliability of Lead-Free Solder Joints
  • 1350 Accesses

Abstract

As mentioned earlier that reliability of solder joints consists of three major tasks, namely DFR (design for reliability), reliability testing and data analysis, and failure analysis as shown in Fig. 6.1. The reliability testing and data analysis have been discussed in Chap. 6, DFR is the focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burke C (2013) On the influence of Ag content on the creep behaviour of Sn-Ag-Cu solder alloys. PhD thesis, University of Limerick

    Google Scholar 

  2. Depiver J, Mallik S, Amalu E (2019) Creep response of various solders used in soldering ball grid array (BGA) on printed circuit board (PVB). Proceedings of the International Journal of Computer Science, pp 1–10

    Google Scholar 

  3. Stang E (2018) Constitutive modeling of creep in leaded and lead-free solder alloys using constant strain-rate tensile testing. Master thesis, Wright State University

    Google Scholar 

  4. Gong J (2007) Microstructural features and mechanical behaviour of lead free solders for microelectronic packaging. PhD thesis, Loughborough University

    Google Scholar 

  5. Grama S, Subramanian S, Pierron F (2015) On the identifiability of Anand visco-plastic model parameters using the Virtual Fields Method. Acta Mater 86:118–136

    Article  Google Scholar 

  6. Advani G (2014) Solder joint reliability: a unified thermo-mechanical model approach. Master thesis, North Dakota State University

    Google Scholar 

  7. Kamara E (2013) Testing and inverse modelling for solder joint reliability assessment. PhD thesis, University of Greenwich

    Google Scholar 

  8. Mukherjee S, Nuhi M, Dasgupta A, Modarres M (2016) Creep constitutive models suitable for solder alloys in electronic assemblies. J Electron Packag 138:1–13

    Article  Google Scholar 

  9. Pei M, Fan X, Bhatti PK (2006) Field condition reliability assessment for SnPb and SnAgCu solder joints in power cycling including mini cycles. IEEE/ECTC Proceedings, May 2006, pp 899–905

    Google Scholar 

  10. Fan X, Pei M, Bhatti PK (2006) Effect of finite element modeling techniques on solder joint fatigue life prediction of flip-chip BGA packages. IEEE/ECTC Proceedings, May 2006, pp 972–980

    Google Scholar 

  11. Bhatti P, Pei M, Fan X (2006) Reliability analysis of SnPb and SnAgCu solder joints in FC-BGA packages with thermal enabling preload. IEEE/ECTC Proceedings, May 2006, pp 601–606

    Google Scholar 

  12. Jud P, Grossmann G, Sennhauser U, Uggowitzer P (2005) Local creep in SnAg3.8Cu0.7 lead-free solder. J Electron Mater 34(9):1207–1214

    Article  Google Scholar 

  13. May D, Gordon A, Segletes D (2013) The application of the Norton-Bailey law for creep prediction through power law regression. ASME Turbo Expo, June 2013. pp 1–8

    Book  Google Scholar 

  14. Shen L, Septiwerdani P, Chen Z (2012) Elastic modulus hardness and creep performance of SnBi alloys. Mater Sci Eng A 558:253–258

    Article  Google Scholar 

  15. Shen L, Wu Y, Wang S, Chen Z (2017) Creep behavior of Sn-Bi solder alloys at elevated temperatures studied by nanoindentation. J Mater Sci Mater Electron 28:4114–4124

    Article  Google Scholar 

  16. Wiese S, Schubert A, Walter H, Dudek R, Feustel F, Meusel E, Michel B (2001) Constitutive behaviour of lead-free solders vs. lead-containing solders—experiments on bulk specimens and flip-chip joints. IEEE/ECTC Proceedings, May 2001, pp 1–13

    Google Scholar 

  17. Wiese S, Meusel E, Wolter K, (2003) Microstructural dependence of constitutive properties of eutectic SnAg and SnAgCu solders. IEEE/ECTC Proceedings, May 2003, pp 197–206

    Google Scholar 

  18. Wiese S, Roellig M, Wolter K-J (2005) Creep of eutectic SnAgCu in thermally treated solder joints. IEEE/ECTC Proceedings, May 2005, pp 1272–1281

    Google Scholar 

  19. Wiese S, Roellig M, Mueller M, Bennemann S, Petzold M, Wolter K-J (2007) The size effect on the creep properties of SnAgCu-solder alloys. IEEE/ECTC Proceedings, May 2007, pp 548–557

    Google Scholar 

  20. Yao Y, Long X, Keer L (2017) A review of recent research on the mechanical behavior of lead-free solders. J Electron Packag 69:1–15

    Google Scholar 

  21. Zhang L, Xue S, Gao L, Zeng G, Chen Y, Yu S, Sheng Z (2010) Creep behavior of SnAgCu solders with rare earth Ce doping. Trans Nonferrous Met Soc 20:412–417

    Article  Google Scholar 

  22. Zhang Y, Zhu H, Fujiwara M, Xu J, Dao M (2013) Low-temperature creep of SnPb and SnAgCu solder alloys and reliability prediction in electronic packaging modules. Scr Mater 68:607–610

    Article  Google Scholar 

  23. Che F, Pang J (2013) Fatigue reliability analysis of Sn-Ag-Cu solder joints subjected to thermal cycling. IEEE Trans Device Mater Reliab 13:36–49

    Article  Google Scholar 

  24. Chen G, Zhao X, Wu H (2017) A critical review of Constitutive models for solders in electronic packaging. Adv Mech Eng 9:1–21

    Google Scholar 

  25. Anand L (1982) Constitutive equations for the rate-dependent deformation of metals at elevated temperatures. J Eng Mater Technol 104:12–17

    Article  Google Scholar 

  26. Deshpande A, Khan H, Mirza F, Agonafer D (2014) Global-local finite element optimization study to minimize BGA damage under thermal cycling. IEEE/ITHERM Proceedings, pp 483–487

    Google Scholar 

  27. Motalab M, Basit M, Suhling JC, Bozack MJ, Lall P (2014) Creep test method for determination of Anand parameters for lead free solders and their variation with aging. IEEE/ITHERM Proceedings, pp 127–143

    Google Scholar 

  28. Basit M, Ahmed S, Motalab M, Roberts JC, Suhling JC, Lall P (2016) The Anand parameters for SAC solders after extreme aging. IEEE/ITHERM Proceedings, pp 440–448

    Google Scholar 

  29. Motalab M, Cai Z, Suhling JC, Lall P (2012) Determination of Anand constants for SAC solders using stress-strain or creep data. IEEE/ITHERM Proceedings, pp 910–923

    Google Scholar 

  30. Fan X, Raiser G, Vasudevan V (2005) Effects of dwell time and ramp rate on lead-free solder joints in FCBGA packages. IEEE/ECTC Proceedings, May 2005, pp 901–906

    Google Scholar 

  31. Chen X, Chen G, Sakane M (2005) Prediction of stress-strain relationship with an improved Anand constitutive model for lead-free solder Sn-3.5Ag. IEEE Trans CPMT 28:111–116

    Google Scholar 

  32. Darveaux R, Banerji K (1992) Constitutive relations for tin-based-solder joints. IEEE/ECTC Proceedings, May 1992, pp 538–551

    Google Scholar 

  33. Darveaux R, Banerji K (1992) Constitutive relations for Tin-based-solder joints. IEEE Trans CHMT 15:1013–1024

    Google Scholar 

  34. Bailey C, Rajaguru P, Lu H, Castellazzi A, Antonini M, Pathirana V, Udugampola N, Udrea F, Mitchelson P, Aldhaher S (2018) Mechanical modelling of high power lateral IGBT for LED driver applications. IEEE/ECTC Proceedings, May 2018, pp 1375–1381,

    Google Scholar 

  35. Motalab M, Cai Z, Suhling JC, Zhang J, Evans J, Bozack MJ, Lall P (2012) Improved predictions of lead free solder joint reliability that include aging effects. IEEE/ECTC Proceedings, pp 513–531

    Google Scholar 

  36. Jin T (2017) Investigation on viscoplastic properties of Au-Sn die-attach solder. Master thesis, Delft University of Technology

    Google Scholar 

  37. Ramachandran V, Wu K, Chiang K (2018) Overview study of solder joint reliability due to creep deformation. J Mech 34:637–643

    Article  Google Scholar 

  38. Hamdani H, Radi B, Elhami A (2017) Submodeling technique for assessment and numerical prediction of solder joints failures in mechatronic devices. 13th Mechanical Congress, Morocco, April 2017, pp 1–3

    Google Scholar 

  39. Zha X (2016) Numerical analysis of lead-free solder joints: effects of thermal cycling and electromigration. PhD thesis, Loughborough University

    Google Scholar 

  40. Sun W, Zhu WH, Che FX, Wang CK, Sun AYS, Tan HB (2006) Experimental and numerical assessment of board-level temperature cycling performance for PBGA, FBGA and CSP. IEEE/EPTC Proceedings, pp 121–126

    Google Scholar 

  41. Wang G, Cheng Z, Becker K, Wilde J (2001) Applying Anand model to represent the viscoplastic deformation behavior of solder alloys. J Electron Packag 123:247–253

    Article  Google Scholar 

  42. Zhang G, Jing H, Xu L, Wei J, Han Y (2009) Creep behavior of eutectic 80Au/20Sn solder alloy. J Alloys Compd 476:138–141

    Article  Google Scholar 

  43. Zhang L, Xue S, Gao L, Zeng G, Sheng Z, Chen Y, Yu S (2009) Determination of Anand parameters for SnAgCuCe solder. Modelling and Simulation in Materials Science and Engineering, pp 1–9

    Google Scholar 

  44. Zhang L, Liu Z, Ji Y (2016) Anand constitutive model of lead-free solder joint in 3D IC device. Journal of Physics: 5th International Conference on Mathematical Modeling in Physical Science, pp 1–8

    Google Scholar 

  45. Zhang Z, Chen Z, Liu S, Dong F (2019) Parameter identification of Anand constitutive models for SAC305 using the intelligent optimization algorithm. IEEE/EPTC Proceedings, December 2019., pp 133–137

    Google Scholar 

  46. Wang Q, Johnson W, Ma H, Gale W, Lindahl D (2005) Properties of lead free solder alloys as a function of composition variation. 10th Electronic Circuit and World Convention Conference, pp 1–18

    Google Scholar 

  47. Schubertt A, Dudek R, Auerswald E, Gollhardt A, Michel B, Reicbl H (2003) Fatigue life models for SnAgCu and SnPb solder joints evaluated by experiments and simulation. IEEE/ECTC Proceedings, May 2003, pp 603–610

    Google Scholar 

  48. Pierce D, Sheppard S, Fossum A, Vianco P, Neilsen M (2008) Development of the damage state variable for a unified creep plasticity damage constitutive model of the 95.5Sn-3.9Ag-0.6Cu lead-free solder. J Electron Packag 130:1–12

    Google Scholar 

  49. Vianco P (2005) Fatigue and creep of Pb-Free solder alloys: fundamental properties. In: Shangguan D (ed) Lead-free soldering. ASM International, Materials Park, OH, pp 67–106

    Google Scholar 

  50. Lau JH, Lee NC et al (2018) Reliability of fan-out wafer-level heterogeneous integration. J Microelectron Electron Packag 15(4):148–162

    Article  Google Scholar 

  51. Lau JH, Lee NC et al (2017) Warpage and thermal characterization of fan-out wafer-level packaging. IEEE Trans CPMT 7(10):1729–1738

    Google Scholar 

  52. Lau JH, Lee NC et al (2018) Reliability of FOWLP with large chips and multiple RDLs. IEEE/ECTC Proceedings, May 2018, pp 1568–1576

    Google Scholar 

  53. Lau JH et al (2018) Warpage measurements and characterizations of FOWLP with large chips and multiple RDLs. IEEE Trans CPMT 8:1729–1737

    Google Scholar 

  54. Lau JH, Zhang Q, Li M, Yeung K, Cheung Y, Fan N, Wong Y, Zahn M, Koh M (2015) Stencil printing of underfill for flip chips on organic-panel and Si-wafer substrates. IEEE Trans CPMT 5(7):1027–1035

    Google Scholar 

  55. Hsieh MC, Wu ST, Wu CJ, Lau JH (2014) Energy release rate estimation for through silicon vias in 3-D integration. IEEE Trans CPMT 4:57–65

    Google Scholar 

  56. Lee CK, Chang TC, Lau JH, Huang Y, Lee NC et al (2012) Wafer bumping, assembly, and reliability of fine-pitch lead-free micro solder joints for 3-D IC integration. IEEE Trans CPMT 2:1229–1238

    Google Scholar 

  57. Chai TC, Zhang X, Li H, Sekhar V, Kalandar O, Khan N, Lau JH, Murthy R, Tan Y, Cheng C, Liew S, Chi D (2012) Impact of packaging design on reliability of large die Cu/low-κ (BD) interconnect. IEEE Trans CPMT 2:807–816

    Google Scholar 

  58. Lau JH, Zhang MS, Lee SWR (2011) Embedded 3D hybrid IC integration system-in-package (SiP) for opto-electronic interconnects in organic substrates. J Electron Packag 133:1–7

    Article  Google Scholar 

  59. Chai TC, Zhang X, Lau JH, Selvanayagam CS, Pinjala D, Hoe Y et al (2011) Development of large die fine-pitch Cu/low-k FCBGA package with through silicon via (TSV) interposer. IEEE Trans CPMT 1:660–672

    Google Scholar 

  60. Dauksher W, Lau JH (2009) A finite-element-based solder-joint fatigue-life prediction methodology for Sn–Ag–Cu ball-grid-array packages. IEEE Trans Device Mater Reliab 9:231–236

    Article  Google Scholar 

  61. Selvanayagam C, Lau JH, Zhang X, Seah S, Vaidyanathan K, Chai TC (2009) Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps. IEEE Trans Adv Packag 32:720–728

    Article  Google Scholar 

  62. Lau JH, Dauksher W, Smetana J, Horsley R, Shangguan D, Castello T, Menis I, Love D, Sullivan B (2004) Design for lead-free solder joint reliability of high-density packages. J Soldering Surf Mount Technol 16:12–26

    Article  Google Scholar 

  63. Lau JH et al (2002) Creep analysis and thermal-fatigue life prediction of the lead-free solder sealing ring of a photonic switch. J Electron Packag 124:403–410

    Article  Google Scholar 

  64. Lau JH, Lee R (2002) Effects of build-up printed circuit board thickness on the solder joint reliability of a wafer level chip scale package (WLCSP). IEEE Trans Comp Packag Technol 25:3–14

    Article  Google Scholar 

  65. Lau JH, Pan S, Chang C (2002) A new thermal-fatigue life prediction model for wafer level chip scale package (WLCSP) solder joints. J Electron Packag 124:212–220

    Article  Google Scholar 

  66. Lau JH, Lee R (2002) Modeling and analysis of 96.5Sn-3.5Ag lead-free solder joints of wafer level chip scale package on buildup microvia printed circuit board. IEEE Trans Electron Packag Manuf 25:51–58

    Article  Google Scholar 

  67. Lau JH, Lee R, Pan S, Chang C (2002) Nonlinear time-dependent analysis of micro via-in-pad substrates for solder bumped flip chip applications. J Electron Packag 124:205–211

    Article  Google Scholar 

  68. Lau JH, Lee R (2001) Computational analysis on the effects of double-layer build-up printed circuit board on the wafer level chip scale package (WLCSP) assembly with Pb-free solder joints. Int J Microcircuit Electron Packag 24:89–104

    Google Scholar 

  69. Lau JH, Lee R, Chang C (2000) Solder joint reliability of wafer level chip scale package (WLCSP): a time-temperature-dependent creep analysis. J Electron Packag 122:311–316

    Article  Google Scholar 

  70. Lau J, Dauksher W, Vianco P (2003) Acceleration models, constitutive equations and reliability of lead-free solders and joints. IEEE/ECTC Proceedings, May 2003, pp 229–236

    Google Scholar 

  71. Lau JH, Dauksher W (2004) Creep constitutive equations of Sn(3.5–3.9)wt%Ag(0.5–0.8)wt%Cu lead-free solder joints. In: Michel B (ed) Micromaterails and nanomaterials, pp 54–62

    Google Scholar 

  72. Lau JH (1993) Thermomechanics for electronic packaging. In: Lau JH (ed) Thermal stress and strain in microelectronics packaging. Van Nostrand Reinhold, New York

    Chapter  Google Scholar 

  73. Norton FH (1929) The creep of steel at high temperatures. McGraw-Hill, New York

    Google Scholar 

  74. Lau JH (2000) Low-cost flip-chip technologies for DCA, WLCSP, and PBGA assemblies. McGraw-Hill, New York

    Google Scholar 

  75. Lau JH, Dauksher W (2005) Thermal-mechanical analysis of a flip-chip VCSEL (vertical-cavity surface-emitting laser) package with low-temperature lead-free (Sn-Bi) solder joints. ASME Paper No. IMECE2005-79981

    Google Scholar 

  76. Lau JH, Dauksher W (2006) Thermal stress analysis of a flip-chip parallel VCSEL (vertical-cavity surface-emitting laser) package with low-temperature lead-free (48Sn-52In) solder joints. IEEE/ECTC Proceedings, May 2006, pp. 1009–1017

    Google Scholar 

  77. Garofalo F (1965) Fundamentals of creep and creep-rupture in metals. Macmillan Publishing, New York

    Google Scholar 

  78. Frost HJ, Ashby MF (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamum Press, New York

    Google Scholar 

  79. Fung YC (1965) Foundations of solid mechanics. Prentice Hall, New York

    Google Scholar 

  80. Lau JH (1993) Creep of 96.5Sn3.5Ag solder interconnects. J Soldering Surf Mount Technol 15:45–49

    Article  Google Scholar 

  81. Mei Z, Morris J (1992) Superplastic creep of low melting point solder joints. J Electron Mater 21:401–407

    Article  Google Scholar 

  82. Lau JH (1991) Solder joint reliability: theory and applications. Van Nostrand Reinhold, New York, NY, pp 225–265

    Book  Google Scholar 

  83. Su S, Akkara F, Thaper R, Alkhazali A, Hamasha M, Hamasha S (2019) A state-of-the-art review of fatigue life prediction models for solder joint. J Electron Packag 141:1–13

    Article  Google Scholar 

  84. Lee W, Nguyen L, Selvaduray G (2000) Solder joint fatigue models: review and applicability to chip scale packages. Microelectron Reliab 40:231–244

    Article  Google Scholar 

  85. Syed A (2004) Accumulated creep strain and energy density based thermal fatigue life prediction models for SnAgCu solder joints. IEEE/ECTC Proceedings, May 2004, pp 737–746

    Google Scholar 

  86. Zhang X, Lee R, Pao Y (2000) A damage evolution model for thermal fatigue analysis of solder joints. ASME Transactions. J Electron Packag 122:200–206

    Article  Google Scholar 

  87. Lau JH (1993) Thermal fatigue life prediction of flip chip solder joints by fracture mechanics method. Int J Eng Fract Mech 45:643–654

    Article  Google Scholar 

  88. Wu L, Han X, Shao C, Yao F, Yang W, Wu L, Han X, Shao C, Yao F, Yang W (2019) Thermal fatigue modelling and simulation of flip chip component solder joints under cyclic thermal loading. Energies 12:1–13

    Google Scholar 

  89. Lau JH, Lee R, Chang C, (2001) Solder joint crack propagation analysis of wafer-level chip scale package on printed circuit board assemblies. IEEE Trans CPMT 24:285–292

    Article  Google Scholar 

  90. Long X, Liu Y, Yao Y, Jia F, Zhou C, Fu Y, Wu Y (2018) Constitutive behaviour and life evaluation of solder joint under the multi-field loadings. AIP Adv 8:1–12

    Google Scholar 

  91. Thambi JL (2018) Reliability assessment of lead- free solder joint, based on high cycle fatigue & creep studies on bulk specimen. PhD thesis, Technical University of Berlin 

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lau, J.H., Lee, NC. (2020). Design for Reliability of Solder Joints. In: Assembly and Reliability of Lead-Free Solder Joints. Springer, Singapore. https://doi.org/10.1007/978-981-15-3920-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3920-6_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3919-0

  • Online ISBN: 978-981-15-3920-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics