Skip to main content

Solder Joints in PCB Assembly and Semiconductor Packaging

  • Chapter
  • First Online:
Assembly and Reliability of Lead-Free Solder Joints
  • 1630 Accesses

Abstract

Assembly and reliability of lead-free solder joints are very important topics in electronic manufacturing. There are many books [1–69] and papers [70–315] written on them. In this book, the assembly of lead-free solder joints such as prevailing lead-free materials, soldering processes, advanced specialty flux design, and characterization of lead-free solder joints will be discussed, respectively in Chaps. 25. The reliability of lead-free solder joints such as reliability testing and data analyses, design for reliability, and failure analyses of lead-free solder joints will be discussed, respectively in Chaps. 68. The special features of this book are the materials covered are not only for electronic manufacturing services (EMS) on the second-level interconnects, but also for packaging assembly on the first-level interconnects and for the semiconductor back-end on the 2.5D and 3D IC integration interconnects as shown in Fig. 1.1. The solder joints in various plated-through hole (PTH) and surface mount technology (SMT) printed circuit board (PCB) assemblies, and semiconductor packages will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tummala R, Swaminathan M (2008) System on package: miniaturization of the entire system. McGraw-Hill, New York, NY

    Google Scholar 

  2. Shina S (2008) Green electronics: design and manufacturing. McGraw-Hill, New York

    MATH  Google Scholar 

  3. Lee T, Bieler T, Kim C, Ma H (2015) Fundamentals of lead-free solder interconnect technology. Springer, New York

    Book  Google Scholar 

  4. Liu Y (2012) Power electronic packaging. Springer, New York

    Book  Google Scholar 

  5. Liu S, Liu Y (2011) Modeling and simulation for microelectronic packaging assembly. Wiley, New York

    Book  Google Scholar 

  6. Pang J (2018) Lead-free solder: mechanics and reliability. Springer, New York

    Google Scholar 

  7. Perkins A, Sitaraman S (2009) Solder joint reliability prediction for multiple environments. Springer, New York

    Book  Google Scholar 

  8. Tamin M, Shaffiar N (2014) Solder joint reliability assessment. Springer, New York

    Book  Google Scholar 

  9. Tu KN (2007) Solder joint technology. Springer, New York

    Google Scholar 

  10. Madenci E, Guven I, Kilic B (2003) Fatigue life prediction of solder joints in electronic packages with ANSYS. Springer, New York

    Book  Google Scholar 

  11. Tummala R (2001) Fundamentals of microsystems packaging. McGraw-Hill, New York, NY

    Google Scholar 

  12. Remsburg R (2001) Thermal design of electronic equipment. CRC Press, New York, NY

    Google Scholar 

  13. Prasad RP (1997) Surface mount technology: principles and practice, 2nd edn. Chapman & Hall, New York

    Book  Google Scholar 

  14. Harper CA (1997) Electronic packaging and interconnection handbook, 2nd edn. McGraw Hill, New York

    Google Scholar 

  15. Woodgate RW (1996) The handbook of machine soldering: SMT and TH, 3rd edn. John Wiley & Sons, Inc., New York

    Google Scholar 

  16. Hwang JS (1996) Modern solder technology for competitive electronics manufacturing. McGraw Hill, New York

    Google Scholar 

  17. Harman G (1997) Wire bonding in microelectronics: materials, processes, reliability, and yield. McGraw Hill, New York

    Google Scholar 

  18. Fjelstad J (1997) An engineer’s guide to flexible circuit technology. Electrochemical Publications, Ayr, Great Britain

    Google Scholar 

  19. Elshabini-Riad A, Barlow FD III (1997) Thin film technology handbook. McGraw-Hill, New York, NY

    Google Scholar 

  20. Konsowski SG, Helland AR (1997) Electronic packaging of high speed circuitry. McGraw-Hill, New York, NY

    Google Scholar 

  21. DiGiacomo G (1996) Reliability of electronic packages and semiconductor devices. McGraw-Hill, New York, NY

    Google Scholar 

  22. Qu S, Liu Y (2016) Wafer-level chip-scale packaging, Springer, New York

    Google Scholar 

  23. Liu J (1999) Conductive adhesives for electronics packaging. Electrochemical Publications, Isle of Man, British Isles

    Google Scholar 

  24. Lee NC (2002) Reflow soldering processes and troubleshooting: SMT. BGA, CSP, and Flip Chip Technologies. NEWNES, New York

    Google Scholar 

  25. Lau JH (2019) Heterogeneous integrations. Springer, New York

    Book  Google Scholar 

  26. Lau JH (2018) Fan-out wafer-level packaging. Springer, New York

    Book  Google Scholar 

  27. Lau JH (2016) 3D IC integration and packaging. McGraw-Hill, New York

    Google Scholar 

  28. Lau JH (2013) Through silicon via (TSV) for 3D integration. McGraw-Hill, New York

    Google Scholar 

  29. Lau JH (2011) Reliability of RoHS-compliant 2D and 3D IC interconnects. McGraw-Hill, New York

    Google Scholar 

  30. Lau JH, Lee CK, Premachandran CS, Yu A (2010) Advanced MEMS packaging. McGraw-Hill, New York

    Google Scholar 

  31. Lau JH, Wong CP, Lee NC, Lee SW (2003) Electronics manufacturing with lead-free, halogen-free and conductive-adhesive materials. McGraw-Hill, New York

    Google Scholar 

  32. Lau JH, Ricky Lee SW (2001) Microvias for low cost, high density interconnects. McGraw-Hill, New York

    Google Scholar 

  33. Lau JH (2000) Low cost flip chip technologies. McGraw-Hill, New York

    Google Scholar 

  34. Lau JH, Ricky Lee SW (1999) Chip scale package. McGraw-Hill, New York

    Google Scholar 

  35. Lau JH, Wong CP, Prince J, Nakayama W (1998) Electronic packaging: design, materials, process, and reliability. McGraw-Hill, New York

    Google Scholar 

  36. Lau JH, Pao Y-H (1997) Solder joint reliability of BGA, CSP, flip chip and fine pitch SMT assemblies. McGraw-Hill, New York

    Google Scholar 

  37. Lau JH (ed) (1996) Flip chip technologies. New York, McGraw-Hill

    Google Scholar 

  38. Lau JH (ed) (1995) Ball grid array technology. McGraw-Hill, New York, NY

    Google Scholar 

  39. Lau JH (ed) (1994) Chip on board: technologies for multichip modules. Van Nostrand Reinhold, New York

    Google Scholar 

  40. Lau JH (ed) (1994) Handbook of fine pitch surface mount technology. Van Nostrand Reinhold, New York

    Google Scholar 

  41. Frear D, Morgan H, Burchett S, Lau JH (eds) (1994) The mechanics of solder alloy interconnects. Van Nostrand Reinhold, New York

    Google Scholar 

  42. Lau JH (ed) (1993) Thermal stress and strain in microelectronics packaging. Van Nostrand Reinhold, New York

    Google Scholar 

  43. Lau JH (ed) (1992) Handbook of tape automated bonding. Van Nostrand Reinhold, New York, NY

    Google Scholar 

  44. Lau JH (ed) (1991) Solder joint reliability: theory and applications. Van Nostrand Reinhold, New York, NY

    Google Scholar 

  45. Ross RJ, Boit C, Staab D (eds) (1999) Microelectronic failure analysis: desk reference, 4th edn. ASM International, Materials Park, OH

    Google Scholar 

  46. Blackwell GR (ed) (1999) The electronic packaging handbook. CRC Press, Boca Raton, FL

    Google Scholar 

  47. Brown W (ed) (1999) Advanced electronic packaging: with emphasis on multichip modules. IEEE Press, Piscataway, NJ

    Google Scholar 

  48. Azar K (ed) (1997) Thermal measurements in electronic cooling. CRC Press, New York, NY

    Google Scholar 

  49. Lee YC, Chen WT (eds) (1998) Manufacturing challenges in electronic packaging. London, Chapman & Hall

    Google Scholar 

  50. Puttlitz K, Totta P (eds) (2001) Area array interconnection handbook. Kluwer Academic Publishers, Boston

    Google Scholar 

  51. Shangguan D (ed) (2005) Lead-free solder joint interconnect reliability. ASM International, Materials Park, OH

    Google Scholar 

  52. Bath J (ed) (2007) Lead-free soldering. Springer, New York

    Google Scholar 

  53. Puttlitz K, Stalter K (eds) (2005) Handbook of lead-free solder technology for microelectronic assemblies. Marcel Dekker, New York

    Google Scholar 

  54. Tummala RR, Rymaszewski EJ (eds) (1989) Microelectronics packaging handbook. Van Nostrand Reinhold, New York, NY

    Google Scholar 

  55. Tummala RE, Rymasewski EJ, Klopfenstein AG (eds) (1997) Microelectronics packaging handbook: semiconductor packaging (Part II), 2nd edn. New York, Chapman & Hall

    Google Scholar 

  56. Tummala RE, Rymasewski EJ, Klopfenstein AG (eds) (1997) Microelectronics packaging handbook: subsystem packaging (Part III), 2nd edn. New York, Chapman & Hall

    Google Scholar 

  57. Lu D, Wong CP (eds) (2008) Materials for advanced packaging. Springer, New York, NY

    Google Scholar 

  58. Suhir E, Lee YC, Wong CP (eds) (2007) Micro- and opto-electronic materials and structures: physics, mechanics, design, reliability, packaging. Springer, New York, NY

    Google Scholar 

  59. Tong H, Lai Y, Wong CP (eds) (2013) Advanced flip chip packaging. Springer, New York

    Google Scholar 

  60. Garrou P, Bower C, Ramm P (eds) (2008) Handbook of 3D integration. Wiley, Weinheim

    Google Scholar 

  61. Xie Y, Cong J, Sapatnekar S (eds) (2010) Three-dimensional integrated circuit design. Springer, New York

    Google Scholar 

  62. Wu B, Kumar A, Ramaswami S (eds) (2011) 3D IC stacking technology. McGraw-Hill, New York

    Google Scholar 

  63. Subramanian K (ed) (2012) Lead-free solders: materials reliability for electronics. John Wiley & Sons, New York

    Google Scholar 

  64. Sharif A (ed) (2019) Harsh environment electronics, interconnect materials and performance assessment. Wiley, New York

    Google Scholar 

  65. Mahidhara RK, Frear DR, Sastry SML, Murty KL, Liaw P, Winterbottom WL (1997) Design and reliability of solders and solder interconnections. TMS Minerals Metals Materials, Warrendale, PA

    Google Scholar 

  66. Mickelson AR, Basavanhally NR, Lee YC (eds) (1997) Optoelectronic packaging. John Wiley & Sons, New York

    Google Scholar 

  67. Wagner LC (ed) (1999) Failure analysis of integrated circuits: tools and techniques. Kluwer Academic Publishers, Boston/Dordrecht/London

    Google Scholar 

  68. Harper CA (ed) (2000) Electronic packaging and interconnection handbook, 3rd edn. McGraw-Hill, Inc., New York, NY

    Google Scholar 

  69. McCluskey FP, Grzybowski R, Podlesak T (eds) (1997) High temperature electronics. CRC Press, New York, NY

    Google Scholar 

  70. Davis E, Harding W, Schwartz R, Corning J (1964) Solid logic technology: versatile, high performance microelectronics. IBM J Res Develop 8:102–114

    Article  Google Scholar 

  71. Totta P, Sopher R (1969) SLT device metallurgy and its monolithic extension. IBM J Res Develop 5:226–238

    Article  Google Scholar 

  72. Love D, Moresco L, Chou W, Horine D, Wong C, and Beilin S (1994) Wire interconnect structures for connecting an integrated circuit to a substrate. US Patent 5,334,804

    Google Scholar 

  73. Tung F (2003) Pillar connections for semiconductor chips and method of manufacture. US Patent 6,578,754

    Google Scholar 

  74. Tung F (2003) Pillar connections for semiconductor chips and method of manufacture. US Patent 6,592,019

    Google Scholar 

  75. Tung F (2004) Pillar connections for semiconductor chips and method of manufacture. US Patent 6,681,982

    Google Scholar 

  76. Amkor Data Sheet (2019) Flip chip ball grid array (fcBGA)

    Google Scholar 

  77. Huang S, Zhan C, Huang Y, Lin Y, Fan C, Chung S, Kao K, Chang J, Wu M, Yang T, Lau JH, Chen T (2012) Effects of UBM structure/material on the reliability performance of 3D chip stacking with 30μm-pitch solder micro bump interconnections. IEEE/ECTC Proceedings, pp 1287–1292

    Google Scholar 

  78. Li L, Su P, Xue J, Brillhart M, Lau JH, Tzeng P, Lee C, Zhan C, Dai M, Chien H, Wu S (2012) Addressing bandwidth challenges in next generation high performance network systems with 3D IC integration. IEEE ECTC Proceedings, San Diego, CA, pp 1040–1046

    Google Scholar 

  79. Ji M, Li M, Cline J, Seeker D, Cai K, Lau JH, Tzeng P, Zhan C, Lee C (2013) 3D Si interposer design and electrical performance study. Proceedings of DesignCon, Santa Clara, CA, January 2013, pp 1–23

    Google Scholar 

  80. Brunnbauer M, Fürgut E, Beer G, Meyer T, Hedler H, Belonio J, et al. (2006) An embedded device technology based on a molded reconfigured wafer. IEEE/ECTC Proceedings, May 2006, pp 547–551

    Google Scholar 

  81. Jin Y, Teysseyre J, Baraton X, Yoon S, Lin Y, Marimuthu P (2012) Development and characterization of next generation eWLB (embedded Wafer Level BGA) packaging. IEEE/ECTC Proceedings, May 2012, pp 1388–1393

    Google Scholar 

  82. Sharma G, Lakhera N, Benson M, Mawer A (2019) Advanced fan out wafer level package development for small for factor and high-performance microcontroller applications. Proceedings of the International Wafer-Level Packaging Conference, October 2019, pp 1–6

    Google Scholar 

  83. Hwang T, Oh D, Song E, Kim K, Kim J, Lee S (2018) Study of advanced fan-out packages for mobile applications. IEEE/ECTC Proceedings, May 2018, pp 343–348

    Google Scholar 

  84. Lee M, Yoo M, Cho J, Lee S, Kim J, Lee C, Kang D, Zwenger C, Lanzone R (2009) Study of interconnection process for fine pitch flip chip. IEEE/ECTC Proceedings, May 2009, pp 720–723

    Google Scholar 

  85. Tseng C-F, Liu C-S, Wu C-H, Yu D (2016) InFO (wafer level integrated fan-out) technology. IEEE/ECTC Proceedings, May 2016, pp 1–6

    Google Scholar 

  86. Shimizu N, Kaneda W, Arisaka H, Koizumi N, Sunohara S, Rokugawa A, Koyama T (2013) Development of organic multi chip package for high performance application. IMAPS International Symposium on Microelectronics, Orlando, FL, 30 September–3 October 2013, pp 414–419

    Article  Google Scholar 

  87. Oi K, Otake S, Shimizu N, Watanabe S, Kunimoto Y, Kurihara T, Koyama T, Tanaka M, Aryasomayajula L, Kutlu Z (2014) Development of new 2.5D package with novel integrated organic interposer substrate with ultra-fine wiring and high density bumps. IEEE/ECTC Proceedings, May 2014, pp 348–353

    Google Scholar 

  88. Banijamali B, Chiu C, Hsieh C, Lin T, Hu C, Hou S, et al. (2013) Reliability evaluation of a CoWoS-enabled 3D IC package. IEEE/ECTC Proceedings, May 2013, pp 35–40

    Google Scholar 

  89. McCann S, Lee H, Refai-Ahmed G, Lee T, Ramalingam S (2018) Warpage and reliability challenges for stacked silicon interconnect technology in large packages. IEEE/ECTC Proceedings, May 2018, pp 2339–2344

    Google Scholar 

  90. Chiu C, Qian Z, Manusharow M (2014) Bridge interconnect with air gap in package assembly. US Patent 8,872,349

    Google Scholar 

  91. Mahajan R, Sankman R, Patel N, Kim D, Aygun K, Qian Z, et al. (2016) Embedded multi-die interconnect bridge (EMIB)—a high-density, high-bandwidth packaging interconnect. IEEE/ECTC Proceedings, May 2016, pp 557–565

    Google Scholar 

  92. Hou S, Chen W, Hu C, Chiu C, Ting K, Lin T, et al. (2017) Wafer-level integration of an advanced logic-memory system through the second-generation CoWoS technology. IEEE Transactions on Electron Devices, October 2017, pp 4071–4077

    Article  Google Scholar 

  93. Zhang R, Lee R, Xiao D, Chen H (2011) LED packaging using silicon substrate with cavities for phosphor printing and copper-filled TSVs for 3D interconnection. IEEE/ECTC Proceedings, May 2011, pp 1616–1621

    Google Scholar 

  94. Zhang R, Lee R (2012) Moldless encapsulation for LED wafer level packaging using integrated DRIE trenches. J Microelectron Reliab 52:922–932

    Article  Google Scholar 

  95. Zoschke K, Manier C-A, Wilke M, Jürgensen N, Oppermann H, Ruffieux D, Dekker J, Heikkinen H, Piazza S, Allegato G, Lang K-D (2013) Hermetic wafer level packaging of MEMS components using through silicon via and wafer to wafer bonding technologies. IEEE/ECTC Proceedings, Las Vegas, NV, May 2013, pp 1500–1507

    Google Scholar 

  96. Coudrain P, Henry D, Berthelot A, Charbonnier J, Verrun S, Franiatte R, Bouzaida N, Cibrario G, Calmony F, O’Connory I, Lacrevazz T, Fourneaudz L, Flechetz B, Chevrier N, Farcy A, Le-Briz O (2013) 3D integration of CMOS image sensor with coprocessor using TSV last and micro-bumps technologies. IEEE/ECTC Proceedings, Las Vegas, NV, May 2013, pp 674–682

    Google Scholar 

  97. Li L, Chia P, Ton P, Nagar M, Patil S, Xue J, et al. (2016) 3D SiP with organic interposer of ASIC and memory integration. IEEE/ECTC Proceedings, May 2016, pp 1445–1450

    Google Scholar 

  98. Yoon SW, Tang P, Emigh R, Lin Y, Marimuthu PC, Pendse R (2013) Fanout flipchip eWLB (embedded wafer level ball grid array) technology as 2.5D packaging solutions. IEEE/ECTC Proceedings, May 2013, pp 1855–1860

    Google Scholar 

  99. Lin Y, Lai W, Kao C, Lou J, Yang P, Wang C, et al. (2016) Wafer warpage experiments and simulation for fan-out chip-on-substrate. IEEE/ECTC Proceedings, May 2016, pp 13–18

    Google Scholar 

  100. Suk K, Lee S, Kim J, Lee S, Kim H, Lee S, et al. (2018) Low cost Si-less RDL interposer package for high performance computing applications. IEEE/ECTC Proceedings, May 2018, pp 64–69

    Google Scholar 

  101. Yu D (2018). Advanced system integration technology trends. SEMICON Taiwan, September 2018

    Google Scholar 

  102. Tunga K, Ross J, Sikka K, Parikh B (2019) Fatigue life prediction model development for decoupling capacitors. IEEE/ECTC Proceedings, May 2019, pp 1121–1129

    Google Scholar 

  103. Ahari A, Hsiao A, Baty G, Su P, Lee T (2019) Microstructure signature evolution in solder joints, solder bumps, and micro-bumps interconnection in a large 2.5D FCBGA package during thermo-mechanical cycling. IEEE/ECTC Proceedings, May 2019, pp 1099–1105

    Google Scholar 

  104. Wu J, Suhling JC, Lall P (2019) Microstructural evolution in SAC+X solders subjected to aging. IEEE/ECTC Proceedings, May 2019, pp 1087–1098

    Google Scholar 

  105. Madanipour H, Kim Y, Kim C, Shahane N, Mishra D, Noguchi T, Yoshino M, Nguyen L (2019) Effect of intermetallic compound growth on electromigration failure mechanism in low-profile solder joints. IEEE/ECTC Proceedings, May 2019, pp 1316–1323

    Google Scholar 

  106. Hassan K, Alam MS, Suhling JC, Lall P (2019) The Poisson’s ratio of lead free solder—the often forgotten but important material property. IEEE/ECTC Proceedings, May 2019, pp 1958–1969

    Google Scholar 

  107. Su S, Hoque M, Chowdhury M, Hamasha S, Suhling JC, Evans JL, Lall P (2019) Mechanical properties and microstructural fatigue damage evolution in cyclically loaded lead-free solder joints. IEEE/ECTC Proceedings, May 2019, pp 792–799

    Google Scholar 

  108. Waidhas B, Proschwitz J, Pietryga C, Wagner T, Keser B (2019) Study of the board level reliability performance of a large 0.3 mm pitch wafer level package. IEEE/ECTC Proceedings, May 2019, pp 1159–1164

    Google Scholar 

  109. Huang M, Kuang JM, Sun HY (2019) Electromigration-induced β-Sn grain rotation in lead-free flip chip solder bumps. IEEE/ECTC Proceedings, May 2019, pp 2036–2041

    Google Scholar 

  110. Liu L, Luo D, Lu T, Xiao H (2019) Research on applied reliability of BGA solder balls in extreme marine environment. IEEE/ECTC Proceedings, May 2019, pp 2054–2060

    Google Scholar 

  111. Park J, Park J, Paik K (2019) Low temperature transient liquid phase (TLP) bonding using eutectic Sn-In solder anisotropic conductive films (ACFs) for flexible ultrasound transducer. IEEE/ECTC Proceedings, May 2019, pp 2213–2218

    Google Scholar 

  112. Loh W, Hsu C, Kulterman R, Fu H (2019) Impact of low temperature solder on electronic package dynamic warpage behavior and requirement. IEEE/ECTC Proceedings, May 2019, pp 318–324

    Google Scholar 

  113. Huang PS, Yu CK, Chiang WS, Lin MZ, Fang YH, Lin MJ, Liu NW, Lin B, Hsu I (2019) Reliability investigation of extremely large ratio fan-out wafer-level package with low ball density for ultra-short-range radar. IEEE/ECTC Proceedings, May 2019, pp 493–497

    Google Scholar 

  114. Xu J, McCann S, Wang H, Wang J, Pham V, Cain SR, Ahmed G, Park SB (2019) An assessment of electromigration in 2.5D packaging. IEEE/ECTC Proceedings, May 2019, pp 2150–2155

    Google Scholar 

  115. Kim Y, Hah J, Zelaia P, Lee S, Christie L, Houston P, Melkote S, Moon K, Wong C (2019) Microstructures of Pb-free solder joints by reflow and thermo-compression bonding (TCB) processes. IEEE/ECTC Proceedings, May 2019, pp 2349–2358

    Google Scholar 

  116. Ahmed O, Jalilvand G, Fernandez H, Su P, Lee T, Jiang T (2019) Long-term reliability of solder joints in 3D ICs under near-application conditions. IEEE/ECTC Proceedings, May 2019, pp 1106–1112

    Google Scholar 

  117. Fu X, Zhou B, Yao R, En Y, Chen S (2019) Effect of grain orientation and microstructure evolution on electromigration in flip-chip solder joint. IEEE/ECTC Proceedings, May 2019, pp 1324–1327

    Google Scholar 

  118. Miki S, Taneda H, Kobayashi N, Oi K, Nagai K, Koyama T (2019) Development of 2.3D high density organic package using low temperature bonding process with Sn-Bi Solder. IEEE/ECTC Proceedings, May 2019, pp 1599–1604

    Google Scholar 

  119. Shen Y, Zhou S, Li J, Tu KN, Nishikawa H (2019) Microstructure and property changes in Cu/Sn-58Bi/Cu solder joints during thermomigration. IEEE/ECTC Proceedings, May 2019, pp 2003–2008

    Google Scholar 

  120. Zhang S, Huang M, Wu Y, Yang M, Lin T, He P, Paik K (2019) A study on the oxygen plasma treatment on the peel adhesion strength and solder wettability of SnBi58 based anisotropic conductive films. IEEE/ECTC Proceedings, May 2019, p 2028

    Google Scholar 

  121. Kencana S, Kuo Y, Yen Y, Schellkes E (2019) Improving the solder wettability via atmospheric plasma technology. IEEE/ECTC Proceedings, May 2019, pp 2067–2071

    Google Scholar 

  122. Zhanga W, Jia H, Lia M, Zhao W (2019) Ultrasonic-accelerated intermetallic joint formation with composite solder for high-temperature power device packaging. IEEE/ECTC Proceedings, May 2019, pp 183–190

    Google Scholar 

  123. Xie D, Hai J, Wu Z, Economou M (2019) Solder joint reliability of double-side mounted DDR modules for consumer and automotive applications. IEEE/ECTC Proceedings, May 2019, pp 486–492

    Google Scholar 

  124. Shimada S, Okada K, Kudo T, Ueta C, Suzuki Y (2019) High reliability solder resist with strong adhesion and high resolution for high density packaging. IEEE/ECTC Proceedings, May 2019, pp 1015–1021

    Google Scholar 

  125. Kim B, Ryu D, Jeon H, Hazellah M, Chim W, Khim J (2019) Pb-free, high thermal and electrical performance driven die attach material development for power packages. IEEE/ECTC Proceedings, May 2019, pp 1457–1462

    Google Scholar 

  126. Vitello D, Albertinetti A, Rovitto M (2019) Die thickness optimization for preventing electro-thermal fails induced by solder voids in power devices. IEEE/ECTC Proceedings, May 2019, pp 2091–2096

    Google Scholar 

  127. Gagnon P, Fortin C, Weiss T (2019) Package-on-package micro-BGA microstructure interaction with bond and assembly parameters. IEEE/ECTC Proceedings, May 2019, pp 306–313

    Google Scholar 

  128. Gupte O, Teoh K, Tummala R, Murtagian G (2019) Innovative socketable and surface-mountable BGA interconnections. IEEE/ECTC Proceedings, May 2019, pp 1028–1034

    Google Scholar 

  129. Serebreni M, Hernandez N, Sharon G, Blattau N, Hillman C, Symonds K (2019) Improved correlation between accelerated board level reliability (BLR) testing and customer BLR results using a hybrid closed-form/finite element methodology. IEEE/ECTC Proceedings, May 2019, pp 2013–2111

    Google Scholar 

  130. Dias R, Kelly M, Balaraman D, Shoji H, Shiraiwa T, Oh K, Park J (2019) Challenges and approaches to developing automotive grade 1/0 FCBGA package capability. IEEE/ECTC Proceedings, May 2019, pp 163–167

    Google Scholar 

  131. Chong S, Siang S (2019) Comprehensive study of copper nano-paste for Cu–Cu bonding. EEE/ECTC Proceedings, May 2019, pp 191–196

    Google Scholar 

  132. Meier K, Winkler M, Bock K, Leslie D, Dasgupta A (2019) Fatigue behaviour of lead-free solder joints under combined thermal and vibration loads. IEEE/ECTC Proceedings, May 2019, pp 498–504

    Google Scholar 

  133. Gao G, Mirkarimi L, Workman T, Fountain G, Theil J, Guevara G, Liu P, Lee B, Mrozek P, Huynh M, Rudolph C, Werner T, Hanisch A (2019) Low temperature Cu interconnect with chip to wafer hybrid bonding. IEEE/ECTC Proceedings, May 2019, pp 628–635

    Google Scholar 

  134. Lau JH (2019) Recent advances and trends in fan-out wafer/panel-level packaging. J Electron Packag 141:1–27

    Article  Google Scholar 

  135. Lau JH (2019) Overview and outlook for heterogeneous integrations. Chip Scale Rev 23:34–40

    Google Scholar 

  136. Lau JH (2019) Recent advances and trends in heterogeneous integrations. J Microelectron Electron Packag 16(2):45–77

    Article  Google Scholar 

  137. Lau JH (2019) Redistribution-layers for heterogeneous integrations. Chip Scale Rev 23:20–25

    Google Scholar 

  138. Lau JH, Lee NC et al (2018) Reliability of fan-out wafer-level heterogeneous integration. J Microelectron Electron Packag 15(4):148–162

    Article  Google Scholar 

  139. Lau JH, Lee NC et al (2018) Fan-out wafer-level packaging for heterogeneous integration. IEEE Trans CPMT 8(9):1544–1560

    Google Scholar 

  140. Ko CT, Yang H, Lau JH, Lee NC et al (2018) Design, materials, process, and fabrication of fan-out panel-level heterogeneous integration. J Microelectron Electron Packag 15(4):141–147

    Article  Google Scholar 

  141. Lau JH, Lee NC et al (2018) Design, materials, process, and fabrication of fan-out wafer-level packaging. IEEE Trans CPMT 8(6):991–1002

    Google Scholar 

  142. Ko CT, Lau JH, Lee NC et al (2018) Chip-first fan-out panel level packaging for heterogeneous integration. IEEE Trans CPMT 8(9):1561–1572

    Google Scholar 

  143. Lau JH, Lee NC et al (2018) Warpage measurements and characterizations of FOWLP with large chips and multiple RDLs. IEEE Trans CPMT 8(10):1729–1737

    Google Scholar 

  144. Lau JH (2018) 8 ways to make RDLs for FOW/PLP. Chip Scale Rev 22:11–19

    Google Scholar 

  145. Lau JH (2018) 3D IC heterogeneous integration by FOWLP. Chip Scale Rev 22:16–21

    Google Scholar 

  146. Lau JH, Lee NC et al (2017) Fan-out wafer-level packaging (FOWLP) of large chip with multiple redistribution layers (RDLs). J Microelectron Electron Packag 14(4):123–131

    Article  Google Scholar 

  147. Lau JH, Lee NC et al (2017) Warpage and thermal characterization of fan-out wafer-level packaging. IEEE Trans CPMT 7(10):1729–1738

    Google Scholar 

  148. Lau JH (2017) Recent advances and trends in advanced packaging. Chip Scale Rev 21:46–54

    Google Scholar 

  149. Lau JH (2016) Recent advances and new trends in flip chip technology. J Electron Packag 138(3):1–23

    Article  Google Scholar 

  150. Lau JH (2016) TSV-less interposers. Chip Scale Rev 20:28–35

    Google Scholar 

  151. Lau JH, Fan N, Li M (2016) Design, material, process, and equipment of embedded fan-out wafer/panel-level packaging. Chip Scale Rev 20:38–44

    Google Scholar 

  152. Lau JH (2015) Patent issues of fan-out wafer/panel-level packaging. Chip Scale Rev 19:42–46

    Google Scholar 

  153. Lau JH, Li M, Fan N, Tse R (2015) Thermocompression bonding for flip-chip technology. Chip Scale Rev 19:30–36

    Google Scholar 

  154. Lau JH, Zhang Q, Li M, Yeung K et al (2015) Stencil printing of underfill for flip chips on organic-panel and Si-wafer substrates. IEEE Trans CPMT 5(7):1027–1035

    Google Scholar 

  155. Lau JH (2015) Semiconductor and packaging for internet of things. Chip Scale Rev 19:25–30

    Google Scholar 

  156. Lau JH (2014) Overview and outlook of 3D IC packaging, 3D IC integration, and 3D Si integration. J Electron Packag 136(4):1–15

    Article  Google Scholar 

  157. Lau JH, Lee C, Zhan C et al (2014) Low-cost through-silicon hole interposers for 3D IC integration. IEEE Trans CPMT 4(9):1407–1419

    Google Scholar 

  158. Lau JH, Tzeng P, Lee C, Zhan C, Li M et al (2014) Redistribution layers (RDLs) for 2.5D/3D IC integration. J Microelectron Packag 11(1):16–24

    Article  Google Scholar 

  159. Lau JH (2014) The future of interposer for semiconductor IC packaging. Chip Scale Rev 18(1):32–36

    Google Scholar 

  160. Hsieh MC, Wu ST, Wu CJ, Lau JH (2014) Energy release rate estimation for through silicon vias in 3-D integration. IEEE Trans CPMT 4(1):57–65

    Google Scholar 

  161. Lau JH (2013) Supply chains for high-volume manufacturing of 3D IC integration. Chip Scale Rev 17(1):33–39

    Google Scholar 

  162. Khan N, Li H, Tan S, Ho S, Kripesh V, Pinjala D, Lau JH, Chuan T (2013) 3-D Packaging with through-silicon via (TSV) for electrical and fluidic interconnections. IEEE Trans CPMT 3(2):221–228

    Google Scholar 

  163. Lee CC, Wu C, Kao K, Fang C, Zhan C, Lau JH, Chen TH (2013) Impact of high density TSVs on the assembly of 3D-ICs packaging. Microelectron Eng 107:101–106

    Article  Google Scholar 

  164. Lau JH, Tang GY (2012) Effects of TSVs (through-silicon vias) on thermal performances of 3D IC integration system-in-package (SiP). J Microelectron Reliab 52(11):2660–2669

    Article  Google Scholar 

  165. Lau JH (2012) Recent advances and new trends in nanotechnology and 3D integration for semiconductor industry. ECS Trans 44(1):805–825

    Article  Google Scholar 

  166. Chien HC, Lau JH, Chao Y, Tain R, Dai M, Wu ST, Lo W, Kao MJ (2012) Thermal performance of 3D IC integration with through-silicon via (TSV). J Microelectron Packag 9:97–103

    Article  Google Scholar 

  167. Chen JC, Lau JH, Tzeng PJ et al (2012) Effects of slurry in Cu chemical mechanical polishing (CMP) of TSVs for 3-D IC integration. IEEE Trans CPMT 2(6):956–963

    Google Scholar 

  168. Lee CK, Chang TC, Lau JH, Huang Y et al (2012) Wafer bumping, assembly, and reliability of fine-pitch lead-free micro solder joints for 3-D IC integration. IEEE Trans CPMT 2(8):1229–1238

    Google Scholar 

  169. Chai TC, Zhang X, Li H, Sekhar V, Kalandar O, Khan N, Lau JH, Murthy R, Tan Y, Cheng C, Liew S, Chi D (2012) Impact of packaging design on reliability of large die Cu/low-κ (BD) interconnect. IEEE Trans CPMT 2(5):807–816

    Google Scholar 

  170. Zhang X, Rajoo R, Selvanayagam CS, Kumar A, Rao V, Khan N, Kripesh V, Lau JH, Kwong D, Sundaram V, Tummala RR (2012) Application of piezoresistive stress sensor in wafer bumping and drop impact test of embedded ultrathin device. IEEE Trans CPMT 2(16):935–943

    Google Scholar 

  171. Wu C, Chen S, Tzeng P, Lau JH, Hsu Y, Chen J, Hsin Y, Chen C, Shen S, Lin C, Ku T, Kao M (2012) Oxide liner, barrier and seed layers, and Cu-plating of blind through silicon vias (TSVs) on 300 mm wafers for 3D IC integration. J Microelectron Packag 9(1):31–36

    Article  Google Scholar 

  172. Lau JH, Zhang MS, Lee SWR (2011) Embedded 3D hybrid IC integration system-in-package (SiP) for opto-electronic interconnects in organic substrates. J Electron Packag 133:1–7

    Article  Google Scholar 

  173. Chai TC, Zhang X, Lau JH, Selvanayagam CS et al (2011) Development of large die fine-pitch Cu/low-k FCBGA package with through silicon via (TSV) interposer. IEEE Trans CPMT 1(5):660–672

    Google Scholar 

  174. Lau JH (2011) TSV interposers: the most cost-effective integrator for 3D IC integration. Chip Scale Rev 15(5):23–27

    Google Scholar 

  175. Sharma G, Rao V, Kumar A, Lim Y, Houe K, Lim S, Sekhar V, Rajoo R, Kripesh V, Lau JH (2011) Design and development of multi-die laterally placed and vertically stacked embedded micro-wafer-level packages. IEEE Trans CPMT 1(5):52–59

    Google Scholar 

  176. Kumar A, Zhang X, Zhang Q, Jong M, Huang G, Lee V, Kripesh V, Lee C, Lau JH, Kwong D, Sundaram V, Tummula RR, Meyer-Berg G (2011) Residual stress analysis in thin device wafer using piezoresistive stress sensor. IEEE Trans CPMT 1(6):841–851

    Google Scholar 

  177. Yu A, Lau JH, Ho S, Kumar A et al (2011) Fabrication of high aspect ratio TSV and assembly with fine-pitch low-cost solder microbump for Si interposer technology with high-density interconnects. IEEE Trans CPMT 1(9):1336–1344

    Google Scholar 

  178. Ong YY, Ho S, Sekhar V, Ong X, Ong J, Zhang X, Kripesh V, Yoon S, Lau JH, Lim Y et al (2011) Underfill selection, characterization, and reliability study for fine-pitch, large die Cu/low-k flip chip package. IEEE Trans CPMT 1(3):279–290

    Google Scholar 

  179. Zhang X, Lau JH, Premachandran CS et al (2011) Development of a Cu/Low-k stack die fine pitch ball grid array (FBGA) package for system in package applications. IEEE Trans CPMT 1(3):299–309

    Google Scholar 

  180. Lau JH (2011) Overview and outlook of TSV and 3D integrations. J Microelectron Int 28(2):8–22

    Article  Google Scholar 

  181. Lau JH, Zhan C-J, Tzeng P-J, Lee C-K et al (2011) Feasibility study of a 3D IC integration system-in-packaging (SiP) from a 300 mm multi-project wafer (MPW). J Microelectron Electron Packag 8(4):171–178

    Article  Google Scholar 

  182. Sheu S, Lin Z, Hung J, Lau JH, Chen P, Wu S, Su K, Lin C, Lai S, Ku T, Lo W, Kao M (2011) An electrical testing method for blind through silicon vias (TSVs) for 3D IC integration. J Microelectron Electron Packag 8(4):140–145

    Article  Google Scholar 

  183. Lau JH (2010) Critical issues of 3D IC integrations. J Microelectron Electron Packag:35–43

    Google Scholar 

  184. Lau JH, Chan YS, Lee RSW (2010) 3D IC integration with TSV interposers for high-performance applications. Chip Scale Rev 14(5):26–29

    Google Scholar 

  185. Lau JH (2010) Design and process of 3D MEMS packaging. J Microelectron Electron Packag:10–15

    Google Scholar 

  186. Lau JH, Lee R, Yuen M, Chan P (2010) 3D LED and IC wafer level packaging. J Microelectron Int 27(2):98–105

    Article  Google Scholar 

  187. Lau JH (2010) State-of-the-art and trends in 3D integration. Chip Scale Rev 14(2):22–28

    Google Scholar 

  188. Ong Y, Ho S, Kripesh V, Sekhar V, Jong M, Long S, Lee V, Leong W, Rao V, Ong J, Ong X, Zhang X, Yoon S, Lau JH, Lim Y, Yeo D, Chan K, Zhang Y, Tan J, Sohn D (2010) Design, assembly and reliability of large die and fine-pitch Cu/low-k flip chip package. J Microelectron Reliab 50:986–994

    Article  Google Scholar 

  189. Tang GY, Tan S, Khan N, Pinjala D, Lau JH, Yu A, Kripesh V, Toh K (2010) Integrated liquid cooling systems for 3-D stacked TSV modules. IEEE Trans CPMT 33(1):184–195

    Google Scholar 

  190. Rao V, Zhang X, Ho S, Rajoo R, Premachandran CS, Kripesh V, Yoon S, Lau JH (2010) Design and development of fine pitch copper/low-K wafer level package. IEEE Trans Adv Packag 33(2):377–388

    Article  Google Scholar 

  191. Khan N, Rao V, Lim S, We H, Lee V, Zhang X, Liao E, Nagarajan R, Chai TC, Kripesh V, Lau JH (2010) Development of 3-D silicon module with TSV for system in packaging. IEEE Trans CPMT 33(1):3–9

    Google Scholar 

  192. Lim S, Rao V, Hnin W, Ching W, Kripesh V, Lee C, Lau JH, Milla J, Fenner A (2010) Process development and reliability of microbumps. IEEE Trans CPMT 33(4):747–753

    Google Scholar 

  193. Lim Y, Xiao X, Vempati R, Nandar S, Aditya K, Gaurav S, Lim T, Kripesh V, Shi J, Lau JH, Liu S (2010) Higg quality and low loss millimeter wave passives demonstrated to 77-GHz for SiP technologies using embedded wafer-level packaging platform (EMWLP). IEEE Trans Adv Packag 33:1061–1071

    Article  Google Scholar 

  194. Lee C, Yu A, Yan L, Wang H, Han J, Zhang Q, Lau JH (2009) Characterization of intermediate In/Ag layers of low temperature fluxless solder based wafer bonding for MEMS packaging. J Sens Actuator A Phys 154:85–91

    Article  Google Scholar 

  195. Yu D-Q, Lee C, Yan LL, Thew ML, Lau JH (2009) Characterization and reliability study of low temperature hermetic wafer level bonding using In/Sn interlayer and Cu/Ni/Au metallization. J Alloy Compd 485:444–450

    Article  Google Scholar 

  196. Yu DQ, Lee C, Yan LL, Choi WK, Yu A, Lau JH (2009) The role of Ni buffer layer on high yield low temperature hermetic wafer bonding using In/Sn/Cu metallization. Appl Phys Lett 94(3):1–3

    Article  Google Scholar 

  197. Made R, Gan C, Yan L, Yu A, Yoon S, Lau JH, Lee C (2009) Study of low temperature thermocompression bonding in Ag-In solder for packaging applications. J Electron Mater 38(2):365–371

    Article  Google Scholar 

  198. Yan LL, Lee CK, Yu DQ, Yu A, Choi W, Lau JH, Yoon S (2009) A hermetic seal using composite thin solder In/Sn as intermediate layer and its interdiffusion reaction with Cu. J Electron Mater 38(2):200–207

    Article  Google Scholar 

  199. Dauksher W, Lau JH (2009) A finite-element-based solder-joint fatigue-life prediction methodology for Sn–Ag–Cu ball-grid-array packages. IEEE Trans Dev Mater Reliab 9(2):231–236

    Article  Google Scholar 

  200. Yu DQ, Li Y, Lee C, Choi W, Thew S, Foo C, Lau JH (2009) Wafer-level hermetic bonding using Sn/In and Cu/Ti/Au metallization. IEEE Trans CPMT 32(4):926–934

    Google Scholar 

  201. Yu A, Khan N, Archit G, Pinjala D, Toh K, Kripesh V, Yoon S, Lau JH (2009) Fabrication of silicon carriers with TSV electrical interconnections and embedded thermal solutions for high power 3-D packages. IEEE Trans CPMT 32(3):566–571

    Google Scholar 

  202. Selvanayagam C, Lau JH, Zhang X, Seah S, Vaidyanathan K, Chai TC (2009) Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps. IEEE Trans Adv Packag 32(4):720–728

    Article  Google Scholar 

  203. Lau JH, Gleason J, Schroeder V, Henshall G, Dauksher W, Sullivan B (2008) Design, materials, and assembly process of high-density packages with a low-temperature lead-free solder (SnBiAg). Solder Surf Mount Technol 20(2):11–20

    Article  Google Scholar 

  204. Lau JH, Gleason J, Schroeder V, Henshall G, Dauksher W, Sullivan B (2008) Reliability test and failure analysis of high-density packages assembled with a low-temperature lead-free solder (SnBiAg). Solder Surf Mount Technol 20(2):21–29

    Article  Google Scholar 

  205. Lau JH, Castello T, Shangguan D, Dauksher W, Smetana J, Horsley R, Love D, Menis I, Sullivan B (2007) Failure analysis of lead-free solder joints of an 1657CCGA (ceramic column grid array) package. J Microelectron Electron Packag 4(3):189–213

    Article  Google Scholar 

  206. Lau JH (2006) Reliability of lead-free solder joints. J Electron Packag 128:297–301

    Article  Google Scholar 

  207. Lau JH (2005) Reliability of an 1657CCGA (ceramic column grid array) package with 96.5Sn3.9Ag0.6Cu lead-free solder paste on pcbs (printed circuit boards). J Electron Packag 127:96–105

    Article  Google Scholar 

  208. Lau JH, Dauksher W, Smetana J, Horsley R, Shangguan D, Castello T, Menis I, Love D, Sullivan B (2004) Design for lead-free solder joint reliability of high-density packages. J Sold Surf Mount Technol 16(1):12–26

    Article  Google Scholar 

  209. Lau JH, Hoo N, Horsley R, Smetana J, Shangguan D, Dauksher W, Love D, Menis I, Sullivan B (2004) Reliability testing and data analysis of lead-free solder joints for high-density packages. J Sold Surf Mount Technol 16(2):46–68

    Article  Google Scholar 

  210. Lau JH, Smetana J, Horsley R, Snowdon K, Shangguan D, Gleason J, Memis I, Love D, Dauksher W, Sullivan B (2004) Design, materials, and process for lead-free assembly of high-density packages. J Sold Surf Mount Technol 16(1):53–62

    Article  Google Scholar 

  211. Lau JH, Shangguan D, Castello T, Horsley R, Smetana J, Dauksher W, Love D, Menis I, Sullivan B (2004) Failure analysis of lead-free solder joints for high-density packages. J Sold Surf Mount Technol 16(2):69–76

    Article  Google Scholar 

  212. Lau JH et al (2003) 3D Nonlinear stress analysis of tin whisker initiation on lead-free components. J Electron Packag 125:621–624

    Article  Google Scholar 

  213. Lau JH et al (2002) Creep Analysis and thermal-fatigue life prediction of the lead-free solder sealing ring of a photonic switch. J Electron Packag 124:403–410

    Article  Google Scholar 

  214. Lau JH, Chang C (2002) Characteristics and reliability of fast-flow, snap-cure, and reworkable underfills for solder bumped flip chip on low-cost substrates. IEEE Trans Electron Packag Manuf 25(3):231–230

    Article  Google Scholar 

  215. Lau JH (2002) Critical issues of wafer level chip scale package (WLCSP) with emphasis on cost analysis and solder joint reliability. IEEE Trans Electron Packag Manuf 25(1):42–50

    Article  Google Scholar 

  216. Lau JH, Lee R (2002) Effects of build-up printed circuit board thickness on the solder joint reliability of a wafer level chip scale package (WLCSP). IEEE Trans Component Packag Technol 25(1):3–14

    Article  Google Scholar 

  217. Lau JH, Pan S, Chang C (2002) A new thermal-fatigue life prediction model for wafer level chip scale package (WLCSP) solder joints. J Electron Packag 124:212–220

    Article  Google Scholar 

  218. Lau JH, Lee R (2002) Modeling and analysis of 96.5Sn-3.5Ag lead-free solder joints of wafer level chip scale package (WLCSP) on build-up microvia printed circuit board. IEEE Trans Electron Packag Manuf 25(1):51–58

    Article  Google Scholar 

  219. Lau JH, Lee R, Pan S, Chang C (2002) Nonlinear time-dependent analysis of micro via-in-pad substrates for solder bumped flip chip applications. J Electron Packag 124:205–211

    Article  Google Scholar 

  220. Lau JH, Chang C, Lee R (2001) Solder joint crack propagation analysis of wafer-level chip scale package on printed circuit board assemblies. IEEE Trans Component Packag Technol 24(2):285–292

    Article  Google Scholar 

  221. Lau JH, Lee R (2001) Computational analysis on the effects of double-layer build-up printed circuit board on the wafer level chip scale package (WLCSP) assembly with Pb-free solder joints. Int J Microelectron Electron Packag IMAPS Trans 24(2):89–104

    Google Scholar 

  222. Lau JH, Lee R, Chang C (2000) Solder joint reliability of wafer level chip scale package (WLCSP): a time-temperature-dependent creep analysis. J Electron Packag 122(4):311–316

    Article  Google Scholar 

  223. Lau JH, Lee R (2000) Fracture mechanics analysis of low cost solder bumped flip chip assemblies with imperfect underfills. J Electron Packag 122(4):306–310

    Article  Google Scholar 

  224. Lau JH (2000) Cost analysis: solder bumped flip chip vs. wire bonding. IEEE Trans Electron Packag Manuf 23:4–11

    Article  Google Scholar 

  225. Lau JH, Chang C, Lee R (2000) Failure analysis of solder bumped flip chip on low-cost substrates. IEEE Trans Electron Packag Manuf 23(1):19–27

    Article  Google Scholar 

  226. Lau JH, Chang C (2000) Taguchi design of experiment for wafer bumping by stencil printing. IEEE Trans Electron Packag Manuf 21(3):219–225

    Article  Google Scholar 

  227. Lau JH, Lee R, Chang C (2000) Effects of underfill material properties on the reliability of solder bumped flip chip on board with imperfect underfill encapsulants. IEEE Trans CPMT:323–333

    Google Scholar 

  228. Lau JH, Chang C, Lee SWR, Chen TY, Cheng D, Tseng TJ, Lin D (2000) Design and manufacturing of micro via-in-pad substrates for solder bumped flip chip applications. J Electron Manuf 10(1):79–87

    Article  Google Scholar 

  229. Lau JH, Lee SW (2000) Effects of underfill delamination and chip size on the reliability of solder bumped flip chip on board. Int J Microelectron Electron Packag IMAPS Trans 23(1):33–39

    Google Scholar 

  230. Lau JH, Lee R (2000) Temperature-dependent popcorning analysis of plastic ball grid array package during solder reflow with fracture mechanics method. J Electron Packag 122:34–41

    Article  Google Scholar 

  231. Lau JH, Lee R, Chao H (1999) Assembly of large pbgas on printed circuit board with large PQFPs directly on the opposite side. J Electron Manuf 9(4):293–298

    Article  Google Scholar 

  232. Lau JH, Chang C, Chen C (1999) Characteristics and reliability of no-flow underfills for solder bumped flip chip assemblies. Int J Microelectron Electron Packag IMAPS Trans 22(4):370–381

    Google Scholar 

  233. Lau JH, Chang C (1999) Delamination analysis of plastic packages during solder reflow by strain-gage measurement and tomographic acoustic micro imaging methods. J Electron Manuf 8:165–172

    Article  Google Scholar 

  234. Lau JH, Chang C, Lee M, Cheng D, Tseng T (1999) Printed circuit board manufacturing and testing of RIMM. J Electron Manuf 9(3):215–222

    Article  Google Scholar 

  235. Lau JH, Chang C (1999) How to select underfill materials for solder bumped flip chips on low cost substrates? Int J Microelectron Electron Packag IMAPS Trans 22(1):20–28

    Google Scholar 

  236. Lau JH (1999) Design, manufacturing, and testing of a novel plastic ball grid array package. J Electron Manuf 9(4):283–291

    Article  Google Scholar 

  237. Lau JH, Chang C (1999) Characterization of underfill materials for functional solder bumped flip chips on board applications. IEEE Trans CPMT Part A 22(1):111–119

    Google Scholar 

  238. Lau JH, Chen T, Lee R (1999) Effect of heat spreader sizes on the thermal performance of large cavity-down plastic ball grid array packages. J Electron Packag 121(4):242–248

    Article  Google Scholar 

  239. Lau JH, Chang C (1999) TMA, DMA, DSC, and TGA of lead free solders. J Sold Surf Mount Technol 11(2):17–24

    Article  Google Scholar 

  240. Lau JH, Chang C, Ouyang C (1998) SMT compatible no-flow underfill for solder bumped flip chip on low-cost substrates. J Electron Manuf 8(3 & 4):151–164

    Article  Google Scholar 

  241. Lau JH (1998) Solder joint reliability of a low cost chip size package—NuBGA. J Microelectron Reliab 38:1519–1529

    Article  Google Scholar 

  242. Lau JH et al (1998) A low-cost solder-bumped chip scale package—NuCSP. J Inst Interconnect Technol 24(3):11–25

    Google Scholar 

  243. Lau JH, Chen KL (1997) Thermal and mechanical evaluations of a cost-effective plastic ball grid array package. J Electron Packag 119:208–212

    Article  Google Scholar 

  244. Lau JH, Lee R (1998) Solder joint reliability of cavity-down plastic ball grid array assemblies. J Sold Surf Mount Technol 10(1):26–31

    Article  Google Scholar 

  245. Lau JH (1997) Nonlinear analysis of full-matrix and perimeter plastic ball grid array solder joints. J Electron Packag:163–170

    Google Scholar 

  246. Lau JH, Chang C, Chen R (1997) Effects of underfill encapsulant on the mechanical and electrical performance of a functional flip chip device. J Electron Manuf 7(4):269–277

    Article  Google Scholar 

  247. Lau JH, Chen KL (1997) Thermal and mechanical evaluation of a cost-effective plastic ball grid array package. J Electron Packag 119:208–212

    Article  Google Scholar 

  248. Lau JH, Jung W, Pao Y (1997) Nonlinear analysis of full-matrix and perimeter plastic ball grid array solder joints. J Electron Packag 119:163–170

    Article  Google Scholar 

  249. Lau JH (1997) The roles of DNP (distance to neutral point) on solder joint reliability of area array assemblies. J Sold Surf Mount Technol 20:58–60

    Article  Google Scholar 

  250. Lau JH, Lee R (1997) Design for plastic ball grid array solder joint reliability. J Inst Interconnect Technol 23(2):11–13

    Google Scholar 

  251. Lau JH (1996) Solder joint reliability of flip chip and plastic ball grid array assemblies under thermal, mechanical, and vibration conditions. IEEE Trans CPMT Part B 19(4):728–735

    Google Scholar 

  252. Lau JH, Lee R (1996) Effect of chip dimension and substrate thickness on the solder joint reliability of plastic ball grid array package. J Inst Interconnect Technol 23:16–19

    Google Scholar 

  253. Lau JH, Schneider E, Baker T (1996) Shock and vibration of solder bumped flip chip on organic coated copper boards. J Electron Packag 118:101–104

    Article  Google Scholar 

  254. Lau JH, Gratalo K, Schneider E, Marcotte T, Baker T (1995) Solder joint reliability of large plastic ball grid array assemblies. J Inst Interconnect Technol 22:27–32

    Google Scholar 

  255. Lau JH, Kelley M (1995) Low cost solder bumped flip chip MCM-L demonstration. J Inst Interconnect Technol 21:159–164

    Google Scholar 

  256. Lau JH, Heydinger M, Glazer J, Uno D (1995) Design and procurement of eutectic solder-bumped flip chip test die and organic substrates. J Inst Interconnect Technol 21:20–24

    Google Scholar 

  257. Lau JH, Wun B (1995) Characterization and evaluation of the underfill encapsulants for flip chip assembly. J Inst Interconnect Technol 21:25–27

    Google Scholar 

  258. Lau JH, Golwalkar S, Erasmus S (1994) Advantages and disadvantages of thin small outline packages (TSOP) with copper gull-wing leads. J Electron Packag 116:234–237

    Article  Google Scholar 

  259. Lau JH (1994) Bending and twisting of solder interconnects with creep. J Electron Packag:154–157

    Google Scholar 

  260. Lau JH, Miremadi J, Gleason J, Haven R, Ottoboni S, Mimura S (1994) No clean mass reflow of large plastic ball grid array carriers. J Instit Interconnect Technol 20:15–22

    Google Scholar 

  261. Lau JH, Pao Y, Larner C, Twerefour S, Govila R, Gilbert D, Eeasmus S, Dolot S (1994) Reliability of 0.4mm pitch, 256-pin plastic quad flat pack no-clean and water-clean solder joints. J Sold Surf Mount Technol 16:42–50

    Article  Google Scholar 

  262. Lau JH (1993) Creep of solder interconnections under combined loads. IEEE Trans CPMT:794–798

    Google Scholar 

  263. Lau JH, Erasmus S (1993) Reliability of fine pitch plastic quad flat pack leads and solder joints under bending, twisting, and thermal conditions. J Electron Packag 115:322–328

    Article  Google Scholar 

  264. Lau JH, Marcotte T, Severine J, Lee A, Erasmus S, Baker T, Moldaschel J, Sporer M, Burward-Hoy G (1993) Solder joint reliability of surface mount connectors. J Electron Packag 115:180–188

    Article  Google Scholar 

  265. Lau JH, Golwalkar S, Boysan P, Surratt R, Rice D, Forhringer R, Erasmus S (1993) Solder joint reliability of a thin small outline package (TSOP). J Instit Interconnect Technol 20(1):12–19

    Google Scholar 

  266. Lau JH (1993) Creep of 96.5Sn3.5Ag solder interconnects. J Sold Surf Mount Technol 15:45–49

    Article  Google Scholar 

  267. Lee N-C (1996) Getting ready for lead free solders. European Surface Mount Conference, Brighton, UK

    Google Scholar 

  268. Lee N-C (1999) Lead-free soldering—where the world is going. Advancing Microelectronics magazine, September/October 1999

    Google Scholar 

  269. Lee N-C (2019) Achieving high reliability for lead-free solder joints—materials consideration. SMTA International Conference, Professional Development Course, Rosemont, IL, 22 September 2019

    Google Scholar 

  270. Sn995 Cobalt-Doped Pb-Free Soldering Alloy. Indium Corporation, Product Data Sheet, 98572

    Google Scholar 

  271. Lee N-C, Liu W (2016) Lead-free solder alloys and solder joints thereof with improved drop impact resistance. US Patent 9,260,768, 16 February 2016

    Google Scholar 

  272. WO 2007/081775 A2, Lead-free solder with low Cu dissolution

    Google Scholar 

  273. Huang B, Hwang H-S, Lee N-C (2008) A compliant and creep resistant SAC-Al(Ni) alloy. APEX, Las Vegas, Nevada, 1–3 April 2008

    Google Scholar 

  274. Lee N-C (2000) Lead-free soldering and low alpha solders for wafer level interconnects. SMTA International, 2000—Chicago

    Google Scholar 

  275. Lee N-C (2017) Short course “Choosing solders for the new era: low cost high reliability solder alloys. IMAPS, , Raleigh, North Carolina, 9–12 October 2017

    Google Scholar 

  276. Indium Corporation product data sheet on Sn995

    Google Scholar 

  277. Goudarzi V, Brown M, Liu W, Lee N-C, Lee JCB (2013) The second generation shock resistant and thermally reliable low Ag SAC solder doped with Mn. SMTA International, Fort Worth, TX, 13–17 October 2013

    Google Scholar 

  278. Geng J, Zhang H, Mutuku F, Lee N-C (2015) Novel lead-free solder alloys development for automotive applications. SMTA International, Rosemont, IL, 27 September–1 October 2015

    Google Scholar 

  279. Lee N-C, Reflow soldering processes and troubleshooting—SMT, BGA, CSP and flip chip technologies. Newnes, pp 269, 2001

    Google Scholar 

  280. Hance W, Lee N-C (1993) Voiding mechanisms in SMT. China Lake’s 17th Annual Electronics Manufacturing Seminar

    Article  Google Scholar 

  281. Herron D, Liu Y, Lee N-C (2011) Pad design and process for voiding control at QFN assembly. APEX, San Diego, CA, 28 February–1 March 2011

    Google Scholar 

  282. Liu Y, Manning W, Huang B, Lee N-C (2005) A model study of profiling for voiding control at lead-free reflow soldering. Nepcon Shanghai, China, 11 April 2005

    Google Scholar 

  283. Jo H, Nieman B, Lee N-C (2002) Voiding of lead-free soldering at microvia. In Proceedings of IMAPS, Denver, CO, September 2002

    Google Scholar 

  284. Dasgupta A, Lee N-C (2004) Effect of lead-free alloys on voiding at microvia. Apex, Anaheim, CA, February 2004

    Google Scholar 

  285. Hance WB, Lee N-C (1995) Voiding in BGA. In Proceedings of 1995 ISHM, Los Angeles, CA, p 535

    Google Scholar 

  286. Ohara W, Lee N-C (1993) Voiding mechanisms in SMT. China Lake’s 17th Annual Electronics Manufacturing Seminar

    Google Scholar 

  287. Lee N-C (2001) Reflow soldering processing and troubleshooting SMT, BGA, CSP, and Flip Chip Technologies. Newnes, p 288

    Google Scholar 

  288. Liu Y, Herron D, Keck J, Lee N-C (2012) Voiding behavior in mixed solder alloy system. SMTA International, Orlando, FL, 14–18 October 2012

    Google Scholar 

  289. Liu Y, Keck J, Page E, Lee N-C (2014) Voiding and drop test performance of lead-free low melting and medium melting mixed alloy BGA assembly. APEX, Las Vegas, NV, 25–27 March 2014

    Google Scholar 

  290. Jo H, Nieman BE, Lee N-C (2004) Effect of lead-free alloys on voiding at microvia. Apex, Anaheim, CA, 23–27 February 2004

    Google Scholar 

  291. Liu Y, Fiacco P, Lee N-C (2010) Testing and prevention of head-in-pillow. ECTC, Las Vegas, NV, June 1–4, 2010

    Google Scholar 

  292. Jaeger PA, Lee N-C (1992) A model study of low residue no-clean solder paste, Nepcon West, Anaheim, CA

    Google Scholar 

  293. Zhou F, Chen F, Lee N-C (2018) Fluxes effective in suppressing non-wet-open at BGA assembly. IMAPS, Pasadena, CA, 8–11 October 2018

    Article  Google Scholar 

  294. Lee N-C, Evans G (1985) Solder paste: meeting the SMT challenge. SITE Magazine, June 1987

    Google Scholar 

  295. Hance WB, Jaeger PA, Lee N-C (1991) Solder beading in SMT—cause and cure. SMI

    Google Scholar 

  296. Hwang J, Lee N-C (1985) A new development in solder paste with unique rheology for surface mounting. Proceedings of the International Symposium on Microelectronics, November 1985, pp 23–30.

    Google Scholar 

  297. Mao R, Chen F, Lee N-C (2019) Fluxes with decreased viscosity after reflow for flip chip and sip assembly. IMAPS, Boston, MA, 30 September–4 October 2019

    Article  Google Scholar 

  298. US Patent 10,010,981, Materials having increased mobility after heating

    Google Scholar 

  299. Chen F, Lee N-C (1993) The risk of no-clean flux not fully dried under component terminations. SMTA China East, Shanghai, China, 20–23 April 2015

    Google Scholar 

  300. Lee N-C (2005) Critical parameters in voiding control at reflow soldering. Chip Scale Review, August–September 2005

    Google Scholar 

  301. Lee N-C (2002) Flux technology for lead-free alloys & its impact on cleaning. SMTA International, Chicago, IL, September 2002

    Google Scholar 

  302. Liu Y, Fiacco P, Lee N-C (2010) Testing and prevention of head-in-pillow. Surface Mount Technology Association (SMTA) China South Conference at NEPCON Shenzhen, August 2010

    Google Scholar 

  303. Xiao M, Jaeger PA, Lee N-C (1997) Probe testability of no-clean solder pastes, Nepcon West

    Google Scholar 

  304. Hu M, Kresge L, Lee N-C (2011) Epoxy flux—a low cost high reliability approach for pop assembly. International Microelectronics Assembly and Packaging Society (IMAPS) Conference, Long Beach, CA, 9–13 October 2011

    Google Scholar 

  305. Yin W, Beckwith G, Hwang H-S, Kresge L, Lee N-C (2002) Epoxy flux—an answer for low cost no-clean flip chip assembly. Nepcon West/Fiberoptic Automation Expo, San Jose, CA, 3–6 December 2002

    Google Scholar 

  306. Yin W, Lee N-C (2003) A novel epoxy flux for lead-free soldering. International Brazing and Soldering Conference, San Diego, CA, 16–21 February 2003

    Google Scholar 

  307. Yin W, Beckwith G, Hwang H-S, Lee N-C (2002) Low cost no-flow underfilling being a reality for manufacturing. Nepcon West/Fiberoptic Automation Expo, San Jose, CA, 3–6 December 2002

    Google Scholar 

  308. Jaeger P, Lee N-C (1992) A model study of low residue no-clean solder paste, Nepcon West, Anaheim, CA

    Google Scholar 

  309. Lee N-C, Evans G (1987) Solder paste: meeting the smt challenge. SITE Magazine, June 1987

    Google Scholar 

  310. Hance WB, Jaeger PA, Lee N-C (1991) Solder beading in SMT—cause and cure. Proceedings of Surface Mount International, San Jose, California, August 1991, p 210

    Google Scholar 

  311. Keck J, Lee N-C (2017) Assessment of solder paste technology limitation at miniaturization for SIP and SMT Application. ICEPT, Harbin, China, 16–19 August 2017

    Google Scholar 

  312. Xiao M, Lawless KJ, Lee N-C (1993) Prospects of solder paste in ultra fine pitch era. SMI, San Jose, CA, 31 August–2 September 1993, pp 454–468

    Google Scholar 

  313. Lee N-C (2007) Future lead-free solder alloys and fluxes—Meeting challenges of miniaturization. International Microsystems, Packaging, Assembly and Circuits Technology (IMPACT) conference, Taipei, Taiwan, 1–3 October 2007

    Google Scholar 

  314. Lee N-C (2019) Short course on “Achieving high reliability of lead-free solder joints”. ECTC, Las Vegas, Nevada, USA, 28–31 May 2019,

    Google Scholar 

  315. Lee N-C (2018) Electromigration—The hurdle for miniaturization and high power devices. short course, IEMT, Melaka, Malaysia, 4–6 September 2018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lau, J.H., Lee, NC. (2020). Solder Joints in PCB Assembly and Semiconductor Packaging. In: Assembly and Reliability of Lead-Free Solder Joints. Springer, Singapore. https://doi.org/10.1007/978-981-15-3920-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3920-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3919-0

  • Online ISBN: 978-981-15-3920-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics