Skip to main content

Separated TZ Induced Optimal Growth Through Virtual Trade

  • Chapter
  • First Online:
Virtual Trade and Comparative Advantage

Abstract

The purpose of this chapter is to propose a model where trade has a direct and positive impact on growth rate of two trading nations beyond the level effect. We use the idea of virtual trade in intermediates induced by non-overlapping time zones and show how trade can increase the equilibrium optimal rate of growth. In this structure the trade impact goes beyond the level effect and directly causes growth. Typically standard models of trade cannot generate an automatic growth impact. Virtual trade may allow production to continue for 24 × 7 in separated time zones such as between US and India and that can lead to higher growth for both countries. Later we extend the model to incorporate accumulation of skill which becomes necessary for sustaining steady state growth.

This chapter draws on Marjit and Mandal [23].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Readers may look into ‘corn law’ for further details.

  2. 2.

    We primarily focus on trade in services or where transportation cost of trading intermediate input is either zero or very negligible both in terms of money and time. This characteristic is predominantly present in case of service trade when transactions are done mainly through information communication technology (ICT) or virtually. In this sense we use the term ‘virtual trade’ though trade is very much real in value and volume. Readers are requested not to confuse with the idea of ‘non-existing’ or ‘unreal’ implication of ‘virtual’.

  3. 3.

    For virtual nature of trade please consult Mandal [20].

  4. 4.

    Hindu rate of growth basically indicates the slow growth rate of Indian economy during the pre-liberalization period.

  5. 5.

    Interested readers are requested to look at Kikuchi et al. [15] for some relevant explanations for how virtual trade may lead to an increase in productivity.

  6. 6.

    Readers are referred to Marjit [22] and Kikuchi et al. [15] for better explanation of this argument.

  7. 7.

    Beladi et al. [3] and Mandal et al. [21] are two related papers for the issue where skill formation and virtual trade is discussed.

  8. 8.

    Alternatively a can be interpreted as managerial cost or something in addition to wage cost/labor cost.

  9. 9.

    Our results would be further strengthened if one introduces differences in wage rates in different countries. In fact, introduction of wage differential may add an interesting dimension to the literature in that the optimum distance related time zone difference for mutually beneficial trade would crucially depend on the value of absolute wage difference.

References

  1. Acemoglu, D., & Ventura, J. (2002). The world income distribution. Quarterly Journal of Economics, 117(2), 659–694.

    Article  Google Scholar 

  2. Baldwin, R., & Robert-Nicoud, F. (2008). Trade and growth with heterogeneous firms. Journal of International Economics 74: 21–34.

    Google Scholar 

  3. Beladi, H., Marjit, S., & Weiher, K. (2011). An analysis of the demand for skill in a growing economy. Economic Modeling 28: 1471–74.

    Google Scholar 

  4. Das, A., Banga, R., & Kumar, D. (2011). Global economic crisis: Impact and restructuring of the services sector in India. ADB Working Paper Series.

    Google Scholar 

  5. Donaldson, D. (2011). Lecture 17: Trade and Growth. Retrieved from MIT Economics. http://economics.mit.edu/faculty/ddonald/courses.

  6. Fernández, R. Rodrik, D. (1990). Why is trade reform so unpopular? CEPR Discussion Papers No. 391.

    Google Scholar 

  7. Findlay, R. (1974). Relative prices, growth and trade in a simple ricardian system. Economica, 41(161), 1–13.

    Article  Google Scholar 

  8. Goldberg, P. K., Khandelwal, A., Pavcnik, N., & Topalova, P. (2010). Imported intermediate inputs and domestic product growth: Evidence from India. Quarterly Journal of Economics, 125(4), 1727–1767.

    Article  Google Scholar 

  9. Grossman, G. M., & Helpman, E. (1990). Trade, innovation, and growth. American Economic Review, 80(2), 86–91.

    Google Scholar 

  10. Grossman, G. M., & Rossi-Hansberg, E. (2008). Trading tasks: A simple theory of offshoring. American Economic Review, 98(5), 1978–1997.

    Article  Google Scholar 

  11. Harberger, A. C. (1984). World economic growth. San Franscisco: ICS Press.

    Google Scholar 

  12. Kaneko, A. (2013). The long run trade pattern in a growing economy. Journal of Economics 79(1): 1–17.

    Google Scholar 

  13. Kikuchi, T. (2011). Time zones, communications networks, and international trade. Routledge Studies in the Modern World Economy, Routledge.

    Google Scholar 

  14. Kikuchi, T., & Marjit, S. (2011). Growth with time zone differences. Economic Modelling, 28(1), 637–640.

    Article  Google Scholar 

  15. Kikuchi, T., Marjit, S., & Mandal, B. (2013). Trade with time zone differences: Factor market implications. Review of Development Economics, 17(4): 699–711.

    Google Scholar 

  16. Krueger, A.O. (1983). The developing countries’ role in the world economy. Working Paper No 78.

    Google Scholar 

  17. Lehdonvirta, V., & Castronova, E. (2014). Virtual economies: Design and analysis. MA: MIT Press.

    Book  Google Scholar 

  18. Lucas, R. E. (1988). On the mechanics of economic development. Journal of Monetary Economics, 22(1), 3–42.

    Article  Google Scholar 

  19. Lucas, R. E. (2002). Lectures on economic growth. Cambridge: Harvard University Press.

    Google Scholar 

  20. Mandal, B. (2015). Distance, production, virtual trade and growth: A note. Economics 9: 1–12.

    Google Scholar 

  21. Mandal, B., Marjit, S., & Nakanishi, N. (2015). Outsourcing, factor prices and skill formation in countries with nonoverlapping time zones. MPRA Paper 68227, University Library of Munich, Germany.

    Google Scholar 

  22. Marjit, S. (2007). Trade theory and the role of time zones. International Review of Economics and Finance, 16(2), 153–160.

    Article  Google Scholar 

  23. Marjit, S., & Mandal, B. (2017). Virtual trade between separated time zones and growth. International Journal of Economic Theory, 13(2), 171–183.

    Article  Google Scholar 

  24. Naito, T. (2012). A Ricardian model of trade and growth with endogenous trade status. Journal of International Economics 87: 80–88.

    Google Scholar 

  25. Rebelo, S. (1991). Long-run policy analysis and long-run growth. Journal of Political Economy, 99(3), 500–521.

    Article  Google Scholar 

  26. Rivera-Batiz, L. A., & Romer, P. M. (1991). Economic integration and endogenous growth. Quarterly Journal of Economics, 106(2), 531–555.

    Article  Google Scholar 

  27. Sahoo, S. K. (2013). Total factor productivity of the software industry in India. IEG Working Paper No. 331.

    Google Scholar 

  28. Ventura, J. (1997). Fertility, income distribution and economic growth: Theory and cross-country evidence: Comments. Japan and the World Economy, 9(2), 231–234.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix 1

1.1 Optimum Demand for \( \varvec{m}_{1} \) and \( \varvec{m}_{2} \)

Total input cost to produce one unit of Y is \( \left\{ {m_{1} \left( {1 + \mu } \right) + m_{2} } \right\} \) as \( m_{1} \) needs to be carried over for final use which has cost of \( \left( {1 + \mu } \right) \). Note that \( P_{y} \) is normalized to unity. Therefore, the profit equation becomes:

$$ \pi = P_{y} Y - \left\{ {m_{1} \left( {1 + \mu } \right) + m_{2} } \right\} = A m_{1}^{{\frac{1 - \alpha }{2}}} m_{2}^{{\frac{1 - \alpha }{2}}} K^{\alpha } - \left\{ {m_{1} \left( {1 + \mu } \right) + m_{2} } \right\} $$

Setting \( \pi_{{m_{1} }} \) and \( \pi_{{m_{2} }} = 0 \) (First Order Condition for profit maximization):

\( \frac{1 - \alpha }{2}Ym_{1}^{ - 1} = \left( {1 + \mu } \right) \) or \( m_{1} = \frac{1 - \alpha }{{2\left( {1 + \mu } \right)}}Y \) (we have denoted it by \( m_{10} \) in the main text). Similarly, \( \frac{1 - \alpha }{2}Ym_{2}^{ - 1} = 1 \) or \( m_{2} = \frac{1 - \alpha }{2}Y \) (we have denoted it by \( m_{20} \) in the main text).

Appendix 2

The Lagrangian for Utility maximization:

$$L\left( {c_{t} , k_{t + 1}, \lambda_t } \right) = u\left( {c_{t} } \right) + \beta V \left( {k_{t + 1} } \right) + \lambda_{t} \left[ {y_{t} - c_{t} - \left( {k_{t + 1} - k_{t} } \right)} \right]$$

First order conditions for optimization, i.e. \( \frac{\delta L}{{\delta c_{t} }} = \frac{\delta L}{{\delta k_{t + 1} }} = \frac{\delta L}{{\delta \lambda_{t} }} = 0\,{\text{yield}} \)

$$ u^{{\prime }} \left( {c_{t} } \right) = \lambda_{t} $$
(8.21)
$$ \beta V^{{\prime }} \left( {k_{t + 1} } \right) = \lambda_{t} $$
(8.22)
$$ y_{t} = c_{t} + \left( {k_{t + 1} - k_{t} } \right) $$
(8.23)

Also by definition (from the budget constraint)

$$ V^{{\prime }} \left( {k_{t} } \right) = \lambda_{t} \left( {\tilde{A} + 1} \right) $$
(8.24)

Updating Eq. (8.24), Eq. (8.22) is modified as

$$ \beta \lambda_{t + 1} \left( {\tilde{A} + 1} \right) = \lambda_{t} $$
(8.25)

Substituting the value of \( \beta = \frac{1}{1 + \rho } \), and comparing Eqs. (8.21) and (8.25)

$$ \frac{{\left( {\tilde{A} + 1} \right)}}{1 + \rho } = \frac{{u^{{\prime }} \left( {c_{t} } \right)}}{{u^{{\prime }} \left( {c_{t + 1} } \right)}} $$
(8.26)

Given \( u^{\prime \prime } < 0, \) it is obvious that \( c_{t + 1} > c_{t} \) if \( \tilde{A} > \rho \).

We shall work with a log-linear utility function. Therefore, \( \frac{{u^{{\prime }} \left( {c_{t} } \right)}}{{u^{{\prime }} \left( {c_{t + 1} } \right)}} = \frac{{c_{t + 1} }}{{c_{t} }} \).

From Eq. (8.26)

$$ \frac{{c_{t + 1} - c_{t} }}{{c_{t} }} = g = \frac{{\left( {\tilde{A} - \rho } \right)}}{1 + \rho } \simeq \left( {\tilde{A} - \rho } \right) $$
(8.27)

Therefore, \( \left( {\tilde{A} - \rho } \right) \) means the growth rate, g. We worked with this formulation for the rest of the chapter. It is the distance between \( \tilde{A} \) and \( \rho \) that determines the magnitude of the growth rate.

Appendix 3

From Eq. (8.12), we have \(B = A^{1/\alpha } \left( {\frac{1 - \alpha }{2}} \right)^{{\frac{1}{\alpha }}} \cdot \left( {\frac{1}{1 + \mu }} \right)^{{\frac{1 - \alpha }{2\alpha }}} \cdot \left( {1 + \frac{1}{1 + \mu }} \right).\) Simple algebraic manipulation provides

$$ B^{2\alpha } = A^{2} \left( {\frac{1 - \alpha }{2}} \right)^{2} \cdot \left( {\frac{1}{1 + \mu }} \right)^{1 - \alpha } \cdot \left( {1 + \frac{1}{1 + \mu }} \right)^{2\alpha } $$

Assuming \( A^{2} \left( {\frac{1 - \alpha }{2}} \right)^{2} = X \) and \(\left( {1 + \mu } \right) = \varphi,\)

$$ \begin{aligned} B^{2\alpha } \left( {1 + \mu } \right) & = X\left( {\frac{1}{\varphi }} \right)^{1 - \alpha } \cdot \left( {1 + \frac{1}{\varphi }} \right)^{2\alpha } \cdot \varphi \\ & = X \cdot \varphi^{ - 1 + \alpha } \cdot \left( {1 + 1/\varphi } \right)^{2\alpha } \cdot \varphi = X \cdot \varphi^{\alpha - 1} \left( {1 + 1/\varphi } \right)^{2\alpha } \cdot \varphi = X\varphi^{\alpha } \cdot \left( {\frac{\varphi + 1}{\varphi }} \right)^{2\alpha } \\ & = X\varphi^{\alpha } \cdot \left( {\varphi + 1} \right)^{2\alpha } \cdot \varphi^{ - 2\alpha } = X\varphi^{ - \alpha } \left( {\varphi + 1} \right)^{2\alpha } \\ \end{aligned} $$

Differentiating the above result, we get

$$ \frac{{d\left[ {B^{2\alpha } \left( {1 + \mu } \right)} \right]}}{{d\left( {1 + \mu } \right)}} = \frac{{d\left( {B^{2\alpha } \cdot \varphi } \right)}}{d\varphi } > 0 $$
  • iff \( \left[ {2\alpha \left( {\varphi + 1} \right)^{2\alpha - 1} \cdot X\varphi^{ - \alpha } - \alpha X\varphi^{ - \alpha - 1} \cdot \left( {\varphi + 1} \right)^{2\alpha } } \right] > 0 \)

  • or \( X\alpha \left( {\varphi + 1} \right)^{2\alpha - 1} \cdot \varphi^{ - \alpha } \left[ {2 - \varphi^{ - 1} \cdot \left( {\varphi + 1} \right)} \right] > 0 \)

  • or \( 2 - \left( {1 + \frac{1}{\varphi }} \right) > 0 \)

Substituting \(\left( {1 + \mu } \right) = \varphi,\)

$$2 - \left( {1 + \frac{1}{\varphi }} \right) = 2 - \left( {\frac{1 + \varphi + 1}{1 + \varphi }} \right) = \frac{\varphi }{1 + \varphi } = \frac{1}{1 + 1/\varphi }.$$

Since \( 0 < \varphi < 1 \), we obtain \( \frac{1}{1 + 1/\varphi } > 0 \). This implies \( \frac{{d\left[ {B^{2\alpha } \left( {1 + \mu } \right)} \right]}}{{d\left( {1 + \mu } \right)}} > 0 \).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Kobe University

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marjit, S., Mandal, B., Nakanishi, N. (2020). Separated TZ Induced Optimal Growth Through Virtual Trade. In: Virtual Trade and Comparative Advantage. Kobe University Monograph Series in Social Science Research. Springer, Singapore. https://doi.org/10.1007/978-981-15-3906-0_8

Download citation

Publish with us

Policies and ethics