Skip to main content

Pharmacogenomics of Immunosuppressants

  • Chapter
  • First Online:
Pharmacogenomics in Precision Medicine
  • 600 Accesses

Abstract

Long-term survival of patients after solid organ transplantation mainly depends on the rational use of immunosuppressants, including the calcineurin inhibitors (e.g., cyclosporine A and tacrolimus) and antimetabolic drugs (e.g., mycophenolic acid). These drugs are characterized by narrow therapeutic index, large interindividual and individual variabilities in pharmacokinetics and pharmacodynamics, promoting an urgent for therapeutic drug monitoring and individualized therapy. The pharmacokinetic variabilities can be partly explained by the genetic polymorphisms of the transporter and metabolic enzyme genes, such as cytochrome P450 (CYP) 3A4/5 polymorphisms for calcineurin inhibitors and UDP glucuronosyltransferase (UGT) 1A9 genetic polymorphisms for mycophenolic acid. In recent years, genetic polymorphisms in pharmacodynamics of immunosuppressants have been paid increasing attention. Monitoring of these pharmacogenetic biomarkers provides us a powerful approach to develop individualized dosage regimen for the immunosuppressants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hebert MF (1997) Contributions of hepatic and intestinal metabolism and P-glycoprotein to cyclosporine and tacrolimus oral drug delivery. Adv Drug Deliv Rev 27(2–3):201–214

    Article  CAS  PubMed  Google Scholar 

  2. Marquet P, Ã…sberg A (2017) Chapter 16 individualized transplant therapy. In: Jelliffe RW, Neely M (eds) Individualized drug therapy for patients. Elsevier Inc., Amsterdam

    Google Scholar 

  3. Staatz CE, Goodman LK, Tett SE (2010) Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part I. Clin Pharmacokinet 49(3):141–175

    Article  CAS  PubMed  Google Scholar 

  4. Langman L, van Gelder T, van Schaik RH (2016) Chapter 5 pharmacogenomics aspect of immunosuppressant therapy. In: Oellerich MM, Dasgupta PA (eds) Personalized immunosuppression in transplantation. Elsevier Inc., Amsterdam, pp 109–124

    Chapter  Google Scholar 

  5. Hesselink DA et al (2003) Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 74(3):245–254

    Article  CAS  PubMed  Google Scholar 

  6. von Ahsen N et al (2001) No influence of the MDR-1 C3435T polymorphism or a CYP3A4 promoter polymorphism (CYP3A4-V allele) on dose-adjusted cyclosporin A trough concentrations or rejection incidence in stable renal transplant recipients. Clin Chem 47(6):1048–1052

    Article  Google Scholar 

  7. Fanta S et al (2008) Pharmacogenetics of cyclosporine in children suggests an age-dependent influence of ABCB1 polymorphisms. Pharmacogenet Genomics 18(2):77–90

    Article  CAS  PubMed  Google Scholar 

  8. Min DI, Ellingrod VL (2003) Association of the CYP3A4∗1B 5′-flanking region polymorphism with cyclosporine pharmacokinetics in healthy subjects. Ther Drug Monit 25(3):305–309

    Article  CAS  PubMed  Google Scholar 

  9. Qiu XY et al (2008) Association of MDR1, CYP3A4∗18B, and CYP3A5∗3 polymorphisms with cyclosporine pharmacokinetics in Chinese renal transplant recipients. Eur J Clin Pharmacol 64(11):1069–1084

    Article  CAS  PubMed  Google Scholar 

  10. Zeng Y et al (2009) Effect of bifendate on the pharmacokinetics of cyclosporine in relation to the CYP3A4∗18B genotype in healthy subjects. Acta Pharmacol Sin 30(4):478–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fukushima-Uesaka H et al (2004) Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population. Hum Mutat 23(1):100

    Article  PubMed  Google Scholar 

  12. Hu YF et al (2007) Association of CYP3A4∗18B polymorphisms with the pharmacokinetics of cyclosporine in healthy subjects. Xenobiotica 37(3):315–327

    Article  CAS  PubMed  Google Scholar 

  13. Lunde I et al (2014) The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur J Clin Pharmacol 70(6):685–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cvetkovic M et al (2017) Effect of age and allele variants of CYP3A5, CYP3A4, and POR genes on the pharmacokinetics of Cyclosporin A in pediatric renal transplant recipients from Serbia. Ther Drug Monit 39(6):589–595

    Article  CAS  PubMed  Google Scholar 

  15. Picard N, Marquet P (2012) Chapter 6 pharmacogenomics of immunosuppressants. In: Langman LJ, Dasgupta A (eds) Pharmacogenomics in clinical therapeutics, 1st edn. Wiley, Hoboken

    Google Scholar 

  16. Hall SD et al (1999) Molecular and physical mechanisms of first-pass extraction. Drug Metab Dispos 27(2):161–166

    CAS  PubMed  Google Scholar 

  17. Cascorbi I et al (2001) Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther 69(3):169–174

    Article  CAS  PubMed  Google Scholar 

  18. Hoffmeyer S et al (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 97(7):3473–3478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Staatz CE, Goodman LK, Tett SE (2010) Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part II. Clin Pharmacokinet 49(4):207–221

    Article  CAS  PubMed  Google Scholar 

  20. Foote CJ et al (2006) MDR1 C3435T polymorphisms correlate with cyclosporine levels in de novo renal recipients. Transplant Proc 38(9):2847–2849

    Article  CAS  PubMed  Google Scholar 

  21. Bonhomme-Faivre L et al (2004) MDR-1 C3435T polymorphism influences cyclosporine a dose requirement in liver-transplant recipients. Transplantation 78(1):21–25

    Article  CAS  PubMed  Google Scholar 

  22. Azarpira N et al (2006) Association between cyclosporine concentration and genetic polymorphisms of CYP3A5 and MDR1 during the early stage after renal transplantation. Exp Clin Transplant 4(1):416–419

    CAS  PubMed  Google Scholar 

  23. Jiang ZP et al (2008) Meta-analysis of the effect of MDR1 C3435T polymorphism on cyclosporine pharmacokinetics. Basic Clin Pharmacol Toxicol 103(5):433–444

    Article  CAS  PubMed  Google Scholar 

  24. Milone MC (2016) Chapter 1 overview of the pharmacology and toxicology of immunosuppressant agents that require therapeutic drug monitoring. In: Oellerich MM, Dasgupta PA (eds) Personalized immunosuppression in transplantation. Elsevier Inc., Amsterdam

    Google Scholar 

  25. Grinyo J et al (2008) Association of four DNA polymorphisms with acute rejection after kidney transplantation. Transpl Int 21(9):879–891

    Article  CAS  PubMed  Google Scholar 

  26. Xu Q et al (2017) NFATC1 genotypes affect acute rejection and long-term graft function in cyclosporine-treated renal transplant recipients. Pharmacogenomics 18(4):381–392

    Article  CAS  PubMed  Google Scholar 

  27. Klauke B et al (2008) No association between single nucleotide polymorphisms and the development of nephrotoxicity after orthotopic heart transplantation. J Heart Lung Transplant 27(7):741–745

    Article  PubMed  Google Scholar 

  28. Hauser IA et al (2005) ABCB1 genotype of the donor but not of the recipient is a major risk factor for cyclosporine-related nephrotoxicity after renal transplantation. J Am Soc Nephrol 16(5):1501–1511

    Article  CAS  PubMed  Google Scholar 

  29. Xu QX et al (2018) FOXP3 rs3761549 polymorphism predicts long-term renal allograft function in patients receiving cyclosporine-based immunosuppressive regimen. Gene 644:93–100

    Article  CAS  PubMed  Google Scholar 

  30. Moscoso-Solorzano GT et al (2008) A search for cyclophilin-a gene variants in cyclosporine A-treated renal transplanted patients. Clin Transpl 22(6):722–729

    Article  Google Scholar 

  31. Staatz CE et al (2004) Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet 43(10):623–653

    Google Scholar 

  32. Yu M et al (2018) Pharmacokinetics, pharmacodynamics and pharmacogenetics of tacrolimus in kidney transplantation. Curr Drug Metab 19(6):513–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li JL et al (2015) Interactive effects of CYP3A4, CYP3A5, MDR1 and NR1I2 polymorphisms on tracrolimus trough concentrations in early postrenal transplant recipients. Pharmacogenomics 16(12):1355–1365

    Article  CAS  PubMed  Google Scholar 

  34. Zuo XC et al (2013) Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis. Pharmacogenet Genomics 23(5):251–261

    Article  CAS  PubMed  Google Scholar 

  35. Elens L et al (2013) Impact of CYP3A4∗22 allele on tacrolimus pharmacokinetics in early period after renal transplantation: toward updated genotype-based dosage guidelines. Ther Drug Monit 35(5):608–616

    CAS  PubMed  Google Scholar 

  36. Pallet N et al (2015) Kidney transplant recipients carrying the CYP3A4∗22 allelic variant have reduced tacrolimus clearance and often reach supratherapeutic tacrolimus concentrations. Am J Transplant 15(3):800–805

    Article  CAS  PubMed  Google Scholar 

  37. Dai Y et al (2006) Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab Dispos 34(5):836–847

    Article  CAS  PubMed  Google Scholar 

  38. Goto M et al (2004) CYP3A5∗1-carrying graft liver reduces the concentration/oral dose ratio of tacrolimus in recipients of living-donor liver transplantation. Pharmacogenetics 14(7):471–478

    Article  CAS  PubMed  Google Scholar 

  39. Thervet E et al (2010) Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin Pharmacol Ther 87(6):721–726

    CAS  PubMed  Google Scholar 

  40. Staatz CE, Goodman LK, Tett SE (2010) Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part I. Clin Pharmacokinet 49(3):141–175

    Google Scholar 

  41. Elens L et al (2014) Impact of POR∗28 on the pharmacokinetics of tacrolimus and cyclosporine a in renal transplant patients. Ther Drug Monit 36(1):71–79

    CAS  PubMed  Google Scholar 

  42. de Jonge H et al (2011) The P450 oxidoreductase ∗28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics 12(9):1281–1291

    Article  PubMed  Google Scholar 

  43. Macian F (2005) NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 5(6):472–484

    Article  CAS  PubMed  Google Scholar 

  44. Klee CB, Ren H, Wang X (1998) Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 273(22):13367–13370

    Article  CAS  PubMed  Google Scholar 

  45. Buchholz M et al (2006) Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2+/calcineurin signaling pathway. EMBO J 25(15):3714–3724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Staatz CE et al (2010) Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part II. Clin Pharmacokinet 49(4):207–221

    Google Scholar 

  47. Chen Z et al (2014) Genetic polymorphisms in IL-2, IL-10, TGF-beta1, and IL-2RB and acute rejection in renal transplant patients. Clin Transpl 28(6):649–655

    Article  CAS  Google Scholar 

  48. Kuypers DR et al (2007) CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clin Pharmacol Ther 82(6):711–725

    Article  CAS  PubMed  Google Scholar 

  49. Kuypers DR et al (2010) Tacrolimus dose requirements and CYP3A5 genotype and the development of calcineurin inhibitor-associated nephrotoxicity in renal allograft recipients. Ther Drug Monit 32(4):394–404

    Article  CAS  PubMed  Google Scholar 

  50. Chen JS et al (2009) Effect of CYP3A5 genotype on renal allograft recipients treated with tacrolimus. Transplant Proc 41(5):1557–1561

    Article  CAS  PubMed  Google Scholar 

  51. Quteineh L et al (2008) Influence of CYP3A5 genetic polymorphism on tacrolimus daily dose requirements and acute rejection in renal graft recipients. Basic Clin Pharmacol Toxicol 103(6):546–552

    Article  CAS  PubMed  Google Scholar 

  52. Tang JT et al (2016) Pharmacogenetic aspects of the use of tacrolimus in renal transplantation: recent developments and ethnic considerations. Expert Opin Drug Metab Toxicol 12(5):555–565

    Article  CAS  PubMed  Google Scholar 

  53. Wu Z et al (2017) FOXP3 rs3761548 polymorphism is associated with tacrolimus-induced acute nephrotoxicity in renal transplant patients. Eur J Clin Pharmacol 73(1):39–47

    Article  CAS  PubMed  Google Scholar 

  54. Wu Z et al (2019) FKBP1A rs6041749 polymorphism is associated with allograft function in renal transplant patients. Eur J Clin Pharmacol 75(1):33–40

    Article  CAS  PubMed  Google Scholar 

  55. Shinozaki G et al (2011) Relationship between FKBP5 polymorphisms and depression symptoms among kidney transplant recipients. Depress Anxiety 28(12):1111–1118

    Article  CAS  PubMed  Google Scholar 

  56. Chen Y et al (2012) Genetic polymorphisms of the transcription factor NFATc4 and development of new-onset diabetes after transplantation in Hispanic kidney transplant recipients. Transplantation 93(3):325–330

    Article  CAS  PubMed  Google Scholar 

  57. Ciliao HL et al (2017) Association of UGT2B7, UGT1A9, ABCG2, and IL23R polymorphisms with rejection risk in kidney transplant patients. J Toxicol Environ Health A 80(13–15):661–671

    Article  CAS  PubMed  Google Scholar 

  58. Kaufman DB et al (2004) Immunosuppression: practice and trends. Am J Transplant 4(Suppl 9):38–53

    Article  PubMed  Google Scholar 

  59. Colvin M et al (2019) OPTN/SRTR 2017 annual data report: heart. Am J Transplant 19(Suppl 2):323–403

    Article  PubMed  Google Scholar 

  60. Hart A et al (2019) OPTN/SRTR 2017 annual data report: kidney. Am J Transplant 19(Suppl 2):19–123

    Article  PubMed  Google Scholar 

  61. Kim WR et al (2019) OPTN/SRTR 2017 annual data report: liver. Am J Transplant 19(Suppl 2):184–283

    Article  PubMed  Google Scholar 

  62. Arns W et al (2005) Enteric-coated mycophenolate sodium delivers bioequivalent MPA exposure compared with mycophenolate mofetil. Clin Transpl 19(2):199–206

    Article  Google Scholar 

  63. Tedesco-Silva H et al (2005) Mycophenolic acid metabolite profile in renal transplant patients receiving enteric-coated mycophenolate sodium or mycophenolate mofetil. Transplant Proc 37(2):852–855

    Article  CAS  PubMed  Google Scholar 

  64. Budde K et al (2007) Pharmacokinetic and pharmacodynamic comparison of enteric-coated mycophenolate sodium and mycophenolate mofetil in maintenance renal transplant patients. Am J Transplant 7(4):888–898

    Article  CAS  PubMed  Google Scholar 

  65. Budde K et al (2007) Conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in maintenance renal transplant recipients receiving tacrolimus: clinical, pharmacokinetic, and pharmacodynamic outcomes. Transplantation 83(4):417–424

    Article  PubMed  Google Scholar 

  66. Fujiyama N et al (2010) Involvement of carboxylesterase 1 and 2 in the hydrolysis of mycophenolate mofetil. Drug Metab Dispos 38(12):2210–2217

    Article  CAS  PubMed  Google Scholar 

  67. Staatz CE, Tett SE (2007) Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet 46(1):13–58

    Article  CAS  PubMed  Google Scholar 

  68. Nowak I, Shaw LM (1995) Mycophenolic acid binding to human serum albumin: characterization and relation to pharmacodynamics. Clin Chem 41(7):1011–1017

    Article  CAS  PubMed  Google Scholar 

  69. Bullingham RE, Nicholls AJ, Kamm BR (1998) Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 34(6):429–455

    Article  CAS  PubMed  Google Scholar 

  70. Bernard O, Guillemette C (2004) The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab Dispos 32(8):775–778

    Article  CAS  PubMed  Google Scholar 

  71. Picard N et al (2005) Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos 33(1):139–146

    Article  CAS  PubMed  Google Scholar 

  72. Wieland E et al (2000) Induction of cytokine release by the acyl glucuronide of mycophenolic acid: a link to side effects? Clin Biochem 33(2):107–113

    Article  CAS  PubMed  Google Scholar 

  73. Kuypers DR et al (2005) The impact of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients. Clin Pharmacol Ther 78(4):351–361

    Article  CAS  PubMed  Google Scholar 

  74. Kiang TK, Ensom MH (2016) Therapeutic drug monitoring of mycophenolate in adult solid organ transplant patients: an update. Expert Opin Drug Metab Toxicol 12(5):545–553

    Article  CAS  PubMed  Google Scholar 

  75. Okour M et al (2018) Mycophenolic acid and its metabolites in kidney transplant recipients: a semimechanistic enterohepatic circulation model to improve estimating exposure. J Clin Pharmacol 58(5):628–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fujiyama N et al (2009) Influence of carboxylesterase 2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Xenobiotica 39(5):407–414

    Article  CAS  PubMed  Google Scholar 

  77. Mackenzie PI et al (2005) Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics 15(10):677–685

    Article  CAS  PubMed  Google Scholar 

  78. Oda S et al (2015) A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development. Drug Metab Pharmacokinet 30(1):30–51

    Article  CAS  PubMed  Google Scholar 

  79. Levesque E et al (2007) The impact of UGT1A8, UGT1A9, and UGT2B7 genetic polymorphisms on the pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy volunteers. Clin Pharmacol Ther 81(3):392–400

    Article  CAS  PubMed  Google Scholar 

  80. Johnson LA et al (2008) Pharmacogenetic effect of the UGT polymorphisms on mycophenolate is modified by calcineurin inhibitors. Eur J Clin Pharmacol 64(11):1047–1056

    Article  CAS  PubMed  Google Scholar 

  81. Sanchez-Fructuoso AI et al (2009) The prevalence of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T and its influence on mycophenolic acid pharmacokinetics in stable renal transplant patients. Transplant Proc 41(6):2313–2316

    Article  CAS  PubMed  Google Scholar 

  82. van Schaik RH et al (2009) UGT1A9 -275T>A/-2152C>T polymorphisms correlate with low MPA exposure and acute rejection in MMF/tacrolimus-treated kidney transplant patients. Clin Pharmacol Ther 86(3):319–327

    Article  PubMed  CAS  Google Scholar 

  83. Ting LS et al (2010) Pharmacogenetic impact of UDP-glucuronosyltransferase metabolic pathway and multidrug resistance-associated protein 2 transport pathway on mycophenolic acid in thoracic transplant recipients: an exploratory study. Pharmacotherapy 30(11):1097–1108

    Article  CAS  PubMed  Google Scholar 

  84. Frymoyer A et al (2013) Population pharmacokinetics of unbound mycophenolic acid in adult allogeneic haematopoietic cell transplantation: effect of pharmacogenetic factors. Br J Clin Pharmacol 75(2):463–475

    Article  CAS  PubMed  Google Scholar 

  85. Mazidi T et al (2013) Impact of UGT1A9 polymorphism on mycophenolic acid pharmacokinetic parameters in stable renal transplant patients. Iran J Pharm Res 12(3):547–556

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ruiz J et al (2015) Impact of single nucleotide polymorphisms (SNPs) on immunosuppressive therapy in lung transplantation. Int J Mol Sci 16(9):20168–20182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kiang TKL et al (2018) Regression and genomic analyses on the association between dose-normalized mycophenolic acid exposure and absolute neutrophil count in steroid-free, De Novo kidney transplant recipients. Clin Drug Investig 38(11):1011–1022

    Article  CAS  PubMed  Google Scholar 

  88. Kuypers DR et al (2008) Current target ranges of mycophenolic acid exposure and drug-related adverse events: a 5-year, open-label, prospective, clinical follow-up study in renal allograft recipients. Clin Ther 30(4):673–683

    Article  CAS  PubMed  Google Scholar 

  89. Baldelli S et al (2007) C-440T/T-331C polymorphisms in the UGT1A9 gene affect the pharmacokinetics of mycophenolic acid in kidney transplantation. Pharmacogenomics 8(9):1127–1141

    Article  CAS  PubMed  Google Scholar 

  90. Jiao Z et al (2008) Population pharmacokinetic modelling for enterohepatic circulation of mycophenolic acid in healthy Chinese and the influence of polymorphisms in UGT1A9. Br J Clin Pharmacol 65(6):893–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fukuda T et al (2012) UGT1A9, UGT2B7, and MRP2 genotypes can predict mycophenolic acid pharmacokinetic variability in pediatric kidney transplant recipients. Ther Drug Monit 34(6):671–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Guo D et al (2013) Polymorphisms of UGT1A9 and UGT2B7 influence the pharmacokinetics of mycophenolic acid after a single oral dose in healthy Chinese volunteers. Eur J Clin Pharmacol 69(4):843–849

    Article  PubMed  Google Scholar 

  93. Xie XC et al (2015) Associations of UDP-glucuronosyltransferases polymorphisms with mycophenolate mofetil pharmacokinetics in Chinese renal transplant patients. Acta Pharmacol Sin 36(5):644–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li LQ et al (2018) Impact of UGT2B7 and ABCC2 genetic polymorphisms on mycophenolic acid metabolism in Chinese renal transplant recipients. Pharmacogenomics 19(17):1323–1334

    Article  CAS  PubMed  Google Scholar 

  95. Ruschel LR et al (2017) Study on the association of UGT1A9 gene c.98T>C polymorphism and mycophenolic acid plasma levels in renal transplant patients. Genet Mol Res 16(2). https://doi.org/10.4238/gmr16029598

  96. Kagaya H et al (2007) Influence of UGT1A8 and UGT2B7 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol 63(3):279–288

    Article  CAS  PubMed  Google Scholar 

  97. Miura M et al (2008) Influence of drug transporters and UGT polymorphisms on pharmacokinetics of phenolic glucuronide metabolite of mycophenolic acid in Japanese renal transplant recipients. Ther Drug Monit 30(5):559–564

    Article  CAS  PubMed  Google Scholar 

  98. Picard N et al (2010) The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics. Clin Pharmacol Ther 87(1):100–108

    Article  CAS  PubMed  Google Scholar 

  99. Geng F et al (2012) The association of the UGT1A8, SLCO1B3 and ABCC2/ABCG2 genetic polymorphisms with the pharmacokinetics of mycophenolic acid and its phenolic glucuronide metabolite in Chinese individuals. Clin Chim Acta 413(7–8):683–690

    PubMed  Google Scholar 

  100. Pithukpakorn M et al (2014) Mycophenolic acid AUC in Thai kidney transplant recipients receiving low dose mycophenolate and its association with UGT2B7 polymorphisms. Pharmgenomics Pers Med 7:379–385

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Huang YH et al (2002) Identification and functional characterization of UDP-glucuronosyltransferases UGT1A8∗1, UGT1A8∗2 and UGT1A8∗3. Pharmacogenetics 12(4):287–297

    Article  CAS  PubMed  Google Scholar 

  102. Bernard O et al (2006) Influence of nonsynonymous polymorphisms of UGT1A8 and UGT2B7 metabolizing enzymes on the formation of phenolic and acyl glucuronides of mycophenolic acid. Drug Metab Dispos 34(9):1539–1545

    Article  CAS  PubMed  Google Scholar 

  103. Bhasker CR et al (2000) Genetic polymorphism of UDP-glucuronosyltransferase 2B7 (UGT2B7) at amino acid 268: ethnic diversity of alleles and potential clinical significance. Pharmacogenetics 10(8):679–685

    Article  CAS  PubMed  Google Scholar 

  104. Lin GF et al (2005) An association of UDP-glucuronosyltransferase 2B7 C802T (His268Tyr) polymorphism with bladder cancer in benzidine-exposed workers in China. Toxicol Sci 85(1):502–506

    Article  CAS  PubMed  Google Scholar 

  105. Lampe JW et al (2000) Prevalence of polymorphisms in the human UDP-glucuronosyltransferase 2B family: UGT2B4(D458E), UGT2B7(H268Y), and UGT2B15(D85Y). Cancer Epidemiol Biomark Prev 9(3):329–333

    CAS  Google Scholar 

  106. Coffman BL et al (1998) The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y(268) and UGT2B7H(268). Drug Metab Dispos 26(1):73–77

    CAS  PubMed  Google Scholar 

  107. Holthe M et al (2002) Morphine glucuronide-to-morphine plasma ratios are unaffected by the UGT2B7 H268Y and UGT1A1∗28 polymorphisms in cancer patients on chronic morphine therapy. Eur J Clin Pharmacol 58(5):353–356

    Article  CAS  PubMed  Google Scholar 

  108. Court MH et al (2003) Evaluation of 3′-azido-3′-deoxythymidine, morphine, and codeine as probe substrates for UDP-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7∗2 polymorphism. Drug Metab Dispos 31(9):1125–1133

    Article  CAS  PubMed  Google Scholar 

  109. Djebli N et al (2007) Influence of the UGT2B7 promoter region and exon 2 polymorphisms and comedications on acyl-MPAG production in vitro and in adult renal transplant patients. Pharmacogenet Genomics 17(5):321–330

    Article  CAS  PubMed  Google Scholar 

  110. Naesens M et al (2006) Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients. Transplantation 82(8):1074–1084

    Article  CAS  PubMed  Google Scholar 

  111. Miura M et al (2007) Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol 63(12):1161–1169

    Article  CAS  PubMed  Google Scholar 

  112. Levesque E et al (2008) Pharmacokinetics of mycophenolate mofetil and its glucuronide metabolites in healthy volunteers. Pharmacogenomics 9(7):869–879

    Article  CAS  PubMed  Google Scholar 

  113. Zhang WX et al (2008) Influence of uridine diphosphate (UDP)-glucuronosyltransferases and ABCC2 genetic polymorphisms on the pharmacokinetics of mycophenolic acid and its metabolites in Chinese renal transplant recipients. Xenobiotica 38(11):1422–1436

    Article  CAS  PubMed  Google Scholar 

  114. Lloberas N et al (2011) Influence of MRP2 on MPA pharmacokinetics in renal transplant recipients-results of the pharmacogenomic substudy within the symphony study. Nephrol Dial Transplant 26(11):3784–3793

    Article  CAS  PubMed  Google Scholar 

  115. Michelon H et al (2010) SLCO1B1 genetic polymorphism influences mycophenolic acid tolerance in renal transplant recipients. Pharmacogenomics 11(12):1703–1713

    Article  CAS  PubMed  Google Scholar 

  116. Weimert NA et al (2007) Monitoring of inosine monophosphate dehydrogenase activity as a biomarker for mycophenolic acid effect: potential clinical implications. Ther Drug Monit 29(2):141–149

    Article  CAS  PubMed  Google Scholar 

  117. Zimmermann AG, Spychala J, Mitchell BS (1995) Characterization of the human inosine-5′-monophosphate dehydrogenase type II gene. J Biol Chem 270(12):6808–6814

    Article  CAS  PubMed  Google Scholar 

  118. Allison AC (2005) Mechanisms of action of mycophenolate mofetil. Lupus 14(Suppl 1):s2–s8

    Article  CAS  PubMed  Google Scholar 

  119. Wang J et al (2008) IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients. Clin Pharmacol Ther 83(5):711–717

    Article  CAS  PubMed  Google Scholar 

  120. Gensburger O et al (2010) Polymorphisms in type I and II inosine monophosphate dehydrogenase genes and association with clinical outcome in patients on mycophenolate mofetil. Pharmacogenet Genomics 20(9):537–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kagaya H et al (2010) Correlation of IMPDH1 gene polymorphisms with subclinical acute rejection and mycophenolic acid exposure parameters on day 28 after renal transplantation. Basic Clin Pharmacol Toxicol 107(2):631–636

    Article  CAS  PubMed  Google Scholar 

  122. Sombogaard F et al (2009) Interpatient variability in IMPDH activity in MMF-treated renal transplant patients is correlated with IMPDH type II 3757T > C polymorphism. Pharmacogenet Genomics 19(8):626–634

    Article  CAS  PubMed  Google Scholar 

  123. Winnicki W et al (2010) An inosine 5′-monophosphate dehydrogenase 2 single-nucleotide polymorphism impairs the effect of mycophenolic acid. Pharmacogenomics J 10(1):70–76

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Miss Xiao-Qin Liu for preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Jiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qiu, Xy., Wu, Z., Xu, Qx., Sheng, Cc., Jiao, Z. (2020). Pharmacogenomics of Immunosuppressants. In: Cai, W., Liu, Z., Miao, L., Xiang, X. (eds) Pharmacogenomics in Precision Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-3895-7_5

Download citation

Publish with us

Policies and ethics