Skip to main content

Pharmacogenomics in Cardiovascular Diseases

  • Chapter
  • First Online:
Pharmacogenomics in Precision Medicine
  • 621 Accesses

Abstract

Cardiovascular disease (CVD) is one of the most serious health problems, particularly in developed countries. CVD includes various abnormal conditions such as hypertension, hypercholesterolemia, congestive heart failure, cerebrovascular disease, and coronary heart disease. Many drugs have been developed to combat CVD. However, not all the drug therapy of CVD could have satisfactory results. The large interindividual variability of cardiovascular drugs could be often explained by the genetic variation along human genome. Some important findings of pharmacogenomics have been confirmed in clinical studies of large scale, presenting a big potential in clinical application. This chapter summarizes pharmacogenomics knowledge in some of the most commonly used drugs in the treatment of CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A, Simes J, Collins R (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376(9753):1670–1681. https://doi.org/10.1016/s0140-6736(10)61350-5

    Article  CAS  PubMed  Google Scholar 

  2. Taylor F, Huffman MD, Macedo AF, Moore TH, Burke M, Davey Smith G, Ward K, Ebrahim S (2013) Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev (1):Cd004816. https://doi.org/10.1002/14651858.CD004816.pub5

  3. Ioannidis JP (2014) More than a billion people taking statins?: potential implications of the new cardiovascular guidelines. JAMA 311(5):463–464. https://doi.org/10.1001/jama.2013.284657

    Article  CAS  PubMed  Google Scholar 

  4. DeGorter MK, Tirona RG, Schwarz UI, Choi YH, Dresser GK, Suskin N, Myers K, Zou G, Iwuchukwu O, Wei WQ, Wilke RA, Hegele RA, Kim RB (2013) Clinical and pharmacogenetic predictors of circulating atorvastatin and rosuvastatin concentrations in routine clinical care. Circ Cardiovasc Genet 6(4):400–408. https://doi.org/10.1161/circgenetics.113.000099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eichner JE, Dunn ST, Perveen G, Thompson DM, Stewart KE, Stroehla BC (2002) Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review. Am J Epidemiol 155(6):487–495. https://doi.org/10.1093/aje/155.6.487

    Article  PubMed  Google Scholar 

  6. Zintzaras E, Kitsios GD, Triposkiadis F, Lau J, Raman G (2009) APOE gene polymorphisms and response to statin therapy. Pharmacogenomics J 9(4):248–257. https://doi.org/10.1038/tpj.2009.25

    Article  CAS  PubMed  Google Scholar 

  7. Jiang XY, Zhang Q, Chen P, Li SY, Zhang NN, Chen XD, Wang GC, Wang HB, Zhuang MQ, Lu M (2012) CYP7A1 polymorphism influences the LDL cholesterol-lowering response to atorvastatin. J Clin Pharm Ther 37(6):719–723. https://doi.org/10.1111/j.1365-2710.2012.01372.x

    Article  CAS  PubMed  Google Scholar 

  8. Kadam P, Ashavaid TF, Ponde CK, Rajani RM (2016) Genetic determinants of lipid-lowering response to atorvastatin therapy in an Indian population. J Clin Pharm Ther 41(3):329–333. https://doi.org/10.1111/jcpt.12369

    Article  CAS  PubMed  Google Scholar 

  9. Feng Q, Wei WQ, Chung CP, Levinson RT, Bastarache L, Denny JC, Stein CM (2017) The effect of genetic variation in PCSK9 on the LDL-cholesterol response to statin therapy. Pharmacogenomics J 17(2):204–208. https://doi.org/10.1038/tpj.2016.3

    Article  CAS  PubMed  Google Scholar 

  10. Chasman DI, Giulianini F, MacFadyen J, Barratt BJ, Nyberg F, Ridker PM (2012) Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Circ Cardiovasc Genet 5(2):257–264. https://doi.org/10.1161/circgenetics.111.961144

    Article  CAS  PubMed  Google Scholar 

  11. Shiffman D, O’Meara ES, Bare LA, Rowland CM, Louie JZ, Arellano AR, Lumley T, Rice K, Iakoubova O, Luke MM, Young BA, Malloy MJ, Kane JP, Ellis SG, Tracy RP, Devlin JJ, Psaty BM (2008) Association of gene variants with incident myocardial infarction in the Cardiovascular Health Study. Arterioscler Thromb Vasc Biol 28(1):173–179. https://doi.org/10.1161/atvbaha.107.153981

    Article  CAS  PubMed  Google Scholar 

  12. Ruiz-Iruela C, Padro-Miquel A, Pinto-Sala X, Baena-Diez N, Caixas-Pedragos A, Guell-Miro R, Navarro-Badal R, Jusmet-Miguel X, Calmarza P, Puzo-Foncilla JL, Alia-Ramos P, Candas-Estebanez B (2018) KIF6 gene as a pharmacogenetic marker for lipid-lowering effect in statin treatment. PLoS One 13(10):e0205430. https://doi.org/10.1371/journal.pone.0205430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Istvan ES, Deisenhofer J (2001) Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292(5519):1160–1164. https://doi.org/10.1126/science.1059344

    Article  CAS  PubMed  Google Scholar 

  14. Cano-Corres R, Candas-Estebanez B, Padro-Miquel A, Fanlo-Maresma M, Pinto X, Alia-Ramos P (2018) Influence of 6 genetic variants on the efficacy of statins in patients with dyslipidemia. J Clin Lab Anal 32(8):e22566. https://doi.org/10.1002/jcla.22566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chung JY, Cho SK, Oh ES, Lee DH, Lim LA, Jang SB, Lee YJ, Park K, Park MS (2012) Effect of HMGCR variant alleles on low-density lipoprotein cholesterol-lowering response to atorvastatin in healthy Korean subjects. J Clin Pharmacol 52(3):339–346. https://doi.org/10.1177/0091270011398239

    Article  CAS  PubMed  Google Scholar 

  16. Leduc V, Bourque L, Poirier J, Dufour R (2016) Role of rs3846662 and HMGCR alternative splicing in statin efficacy and baseline lipid levels in familial hypercholesterolemia. Pharmacogenet Genomics 26(1):1–11. https://doi.org/10.1097/fpc.0000000000000178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu CY, Theusch E, Lo K, Mangravite LM, Naidoo D, Kutilova M, Medina MW (2014) HNRNPA1 regulates HMGCR alternative splicing and modulates cellular cholesterol metabolism. Hum Mol Genet 23(2):319–332. https://doi.org/10.1093/hmg/ddt422

    Article  CAS  PubMed  Google Scholar 

  18. Ho PM, Magid DJ, Shetterly SM, Olson KL, Maddox TM, Peterson PN, Masoudi FA, Rumsfeld JS (2008) Medication nonadherence is associated with a broad range of adverse outcomes in patients with coronary artery disease. Am Heart J 155(4):772–779. https://doi.org/10.1016/j.ahj.2007.12.011

    Article  PubMed  Google Scholar 

  19. Bruckert E, Hayem G, Dejager S, Yau C, Begaud B (2005) Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients—the PRIMO study. Cardiovasc Drugs Ther 19(6):403–414. https://doi.org/10.1007/s10557-005-5686-z

    Article  CAS  PubMed  Google Scholar 

  20. Jiang J, Tang Q, Feng J, Dai R, Wang Y, Yang Y, Tang X, Deng C, Zeng H, Zhao Y, Zhang F (2016) Association between SLCO1B1 -521T>C and -388A>G polymorphisms and risk of statin-induced adverse drug reactions: a meta-analysis. Springerplus 5(1):1368. https://doi.org/10.1186/s40064-016-2912-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F, Gut I, Lathrop M, Collins R (2008) SLCO1B1 variants and statin-induced myopathy--a genomewide study. N Engl J Med 359(8):789–799. https://doi.org/10.1056/NEJMoa0801936

    Article  CAS  PubMed  Google Scholar 

  22. Oswald S, Konig J, Lutjohann D, Giessmann T, Kroemer HK, Rimmbach C, Rosskopf D, Fromm MF, Siegmund W (2008) Disposition of ezetimibe is influenced by polymorphisms of the hepatic uptake carrier OATP1B1. Pharmacogenet Genomics 18(7):559–568. https://doi.org/10.1097/FPC.0b013e3282fe9a2c

    Article  CAS  PubMed  Google Scholar 

  23. Simon JS, Karnoub MC, Devlin DJ, Arreaza MG, Qiu P, Monks SA, Severino ME, Deutsch P, Palmisano J, Sachs AB, Bayne ML, Plump AS, Schadt EE (2005) Sequence variation in NPC1L1 and association with improved LDL-cholesterol lowering in response to ezetimibe treatment. Genomics 86(6):648–656. https://doi.org/10.1016/j.ygeno.2005.08.007

    Article  CAS  PubMed  Google Scholar 

  24. Zhou HH, Koshakji RP, Silberstein DJ, Wilkinson GR, Wood AJ (1989) Racial differences in drug response. Altered sensitivity to and clearance of propranolol in men of Chinese descent as compared with American whites. N Engl J Med 320(9):565–570. https://doi.org/10.1056/NEJM198903023200905

    Article  CAS  PubMed  Google Scholar 

  25. Zhou HH, Wood AJ (1995) Stereoselective disposition of carvedilol is determined by CYP2D6. Clin Pharmacol Ther 57(5):518–524. https://doi.org/10.1016/0009-9236(95)90036-5

    Article  CAS  PubMed  Google Scholar 

  26. Honda M, Nozawa T, Igarashi N, Inoue H, Arakawa R, Ogura Y, Okabe H, Taguchi M, Hashimoto Y (2005) Effect of CYP2D6∗10 on the pharmacokinetics of R- and S-carvedilol in healthy Japanese volunteers. Biol Pharm Bull 28(8):1476–1479. https://doi.org/10.1248/bpb.28.1476

    Article  CAS  PubMed  Google Scholar 

  27. Blake CM, Kharasch ED, Schwab M, Nagele P (2013) A meta-analysis of CYP2D6 metabolizer phenotype and metoprolol pharmacokinetics. Clin Pharmacol Ther 94(3):394–399. https://doi.org/10.1038/clpt.2013.96

    Article  CAS  PubMed  Google Scholar 

  28. Lymperopoulos A, McCrink KA, Brill A (2015) Impact of CYP2D6 genetic variation on the response of the cardiovascular patient to carvedilol and metoprolol. Curr Drug Metab 17(1):30–36. https://doi.org/10.2174/1389200217666151105125425

    Article  CAS  PubMed  Google Scholar 

  29. Hicks JK, Swen JJ, Gaedigk A (2014) Challenges in CYP2D6 phenotype assignment from genotype data: a critical assessment and call for standardization. Curr Drug Metab 15(2):218–232. https://doi.org/10.2174/1389200215666140202215316

    Article  CAS  PubMed  Google Scholar 

  30. Rau T, Wuttke H, Michels LM, Werner U, Bergmann K, Kreft M, Fromm MF, Eschenhagen T (2009) Impact of the CYP2D6 genotype on the clinical effects of metoprolol: a prospective longitudinal study. Clin Pharmacol Ther 85(3):269–272. https://doi.org/10.1038/clpt.2008.218

    Article  CAS  PubMed  Google Scholar 

  31. Rogers JF, Nafziger AN, Bertino JS Jr (2002) Pharmacogenetics affects dosing, efficacy, and toxicity of cytochrome P450-metabolized drugs. Am J Med 113(9):746–750. https://doi.org/10.1016/s0002-9343(02)01363-3

    Article  CAS  PubMed  Google Scholar 

  32. Wuttke H, Rau T, Heide R, Bergmann K, Bohm M, Weil J, Werner D, Eschenhagen T (2002) Increased frequency of cytochrome P450 2D6 poor metabolizers among patients with metoprolol-associated adverse effects. Clin Pharmacol Ther 72(4):429–437. https://doi.org/10.1067/mcp.2002.127111

    Article  CAS  PubMed  Google Scholar 

  33. Sehrt D, Meineke I, Tzvetkov M, Gultepe S, Brockmoller J (2011) Carvedilol pharmacokinetics and pharmacodynamics in relation to CYP2D6 and ADRB pharmacogenetics. Pharmacogenomics 12(6):783–795. https://doi.org/10.2217/pgs.11.20

    Article  CAS  PubMed  Google Scholar 

  34. Wain LV, Verwoert GC, O’Reilly PF, Shi G, Johnson T, Johnson AD, Bochud M, Rice KM, Henneman P, Smith AV, Ehret GB, Amin N, Larson MG, Mooser V, Hadley D, Dorr M, Bis JC, Aspelund T, Esko T, Janssens AC, Zhao JH, Heath S, Laan M, Fu J, Pistis G, Luan J, Arora P, Lucas G, Pirastu N, Pichler I, Jackson AU, Webster RJ, Zhang F, Peden JF, Schmidt H, Tanaka T, Campbell H, Igl W, Milaneschi Y, Hottenga JJ, Vitart V, Chasman DI, Trompet S, Bragg-Gresham JL, Alizadeh BZ, Chambers JC, Guo X, Lehtimaki T, Kuhnel B, Lopez LM, Polasek O, Boban M, Nelson CP, Morrison AC, Pihur V, Ganesh SK, Hofman A, Kundu S, Mattace-Raso FU, Rivadeneira F, Sijbrands EJ, Uitterlinden AG, Hwang SJ, Vasan RS, Wang TJ, Bergmann S, Vollenweider P, Waeber G, Laitinen J, Pouta A, Zitting P, McArdle WL, Kroemer HK, Volker U, Volzke H, Glazer NL, Taylor KD, Harris TB, Alavere H, Haller T, Keis A, Tammesoo ML, Aulchenko Y, Barroso I, Khaw KT, Galan P, Hercberg S, Lathrop M, Eyheramendy S, Org E, Sober S, Lu X, Nolte IM, Penninx BW, Corre T, Masciullo C, Sala C, Groop L, Voight BF, Melander O, O'Donnell CJ, Salomaa V, d'Adamo AP, Fabretto A, Faletra F, Ulivi S, Del Greco F, Facheris M, Collins FS, Bergman RN, Beilby JP, Hung J, Musk AW, Mangino M, Shin SY, Soranzo N, Watkins H, Goel A, Hamsten A, Gider P, Loitfelder M, Zeginigg M, Hernandez D, Najjar SS, Navarro P, Wild SH, Corsi AM, Singleton A, de Geus EJ, Willemsen G, Parker AN, Rose LM, Buckley B, Stott D, Orru M, Uda M, LifeLines Cohort S, van der Klauw MM, Zhang W, Li X, Scott J, Chen YD, Burke GL, Kahonen M, Viikari J, Doring A, Meitinger T, Davies G, Starr JM, Emilsson V, Plump A, Lindeman JH, Hoen PA, Konig IR, EchoGen consortium, Felix JF, Clarke R, Hopewell JC, Ongen H, Breteler M, Debette S, Destefano AL, Fornage M, AortaGen Consortium, Mitchell GF, CHARGE Consortium Heart Failure Working Group, Smith NL, KidneyGen consortium, Holm H, Stefansson K, Thorleifsson G, Thorsteinsdottir U, CKDGen consortium, Cardiogenics consortium, CardioGram, Samani NJ, Preuss M, Rudan I, Hayward C, Deary IJ, Wichmann HE, Raitakari OT, Palmas W, Kooner JS, Stolk RP, Jukema JW, Wright AF, Boomsma DI, Bandinelli S, Gyllensten UB, Wilson JF, Ferrucci L, Schmidt R, Farrall M, Spector TD, Palmer LJ, Tuomilehto J, Pfeufer A, Gasparini P, Siscovick D, Altshuler D, Loos RJ, Toniolo D, Snieder H, Gieger C, Meneton P, Wareham NJ, Oostra BA, Metspalu A, Launer L, Rettig R, Strachan DP, Beckmann JS, Witteman JC, Erdmann J, van Dijk KW, Boerwinkle E, Boehnke M, Ridker PM, Jarvelin MR, Chakravarti A, Abecasis GR, Gudnason V, Newton-Cheh C, Levy D, Munroe PB, Psaty BM, Caulfield MJ, Rao DC, Tobin MD, Elliott P, van Duijn CM (2011) Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat Genet 43(10):1005–1011. https://doi.org/10.1038/ng.922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ganesh SK, Tragante V, Guo W, Guo Y, Lanktree MB, Smith EN, Johnson T, Castillo BA, Barnard J, Baumert J, Chang YP, Elbers CC, Farrall M, Fischer ME, Franceschini N, Gaunt TR, Gho JM, Gieger C, Gong Y, Isaacs A, Kleber ME, Mateo Leach I, McDonough CW, Meijs MF, Mellander O, Molony CM, Nolte IM, Padmanabhan S, Price TS, Rajagopalan R, Shaffer J, Shah S, Shen H, Soranzo N, van der Most PJ, Van Iperen EP, Van Setten J, Vonk JM, Zhang L, Beitelshees AL, Berenson GS, Bhatt DL, Boer JM, Boerwinkle E, Burkley B, Burt A, Chakravarti A, Chen W, Cooper-Dehoff RM, Curtis SP, Dreisbach A, Duggan D, Ehret GB, Fabsitz RR, Fornage M, Fox E, Furlong CE, Gansevoort RT, Hofker MH, Hovingh GK, Kirkland SA, Kottke-Marchant K, Kutlar A, Lacroix AZ, Langaee TY, Li YR, Lin H, Liu K, Maiwald S, Malik R, Cardiogram M, Murugesan G, Newton-Cheh C, O'Connell JR, Onland-Moret NC, Ouwehand WH, Palmas W, Penninx BW, Pepine CJ, Pettinger M, Polak JF, Ramachandran VS, Ranchalis J, Redline S, Ridker PM, Rose LM, Scharnag H, Schork NJ, Shimbo D, Shuldiner AR, Srinivasan SR, Stolk RP, Taylor HA, Thorand B, Trip MD, van Duijn CM, Verschuren WM, Wijmenga C, Winkelmann BR, Wyatt S, Young JH, Boehm BO, Caulfield MJ, Chasman DI, Davidson KW, Doevendans PA, Fitzgerald GA, Gums JG, Hakonarson H, Hillege HL, Illig T, Jarvik GP, Johnson JA, Kastelein JJ, Koenig W, LifeLines Cohort S, Marz W, Mitchell BD, Murray SS, Oldehinkel AJ, Rader DJ, Reilly MP, Reiner AP, Schadt EE, Silverstein RL, Snieder H, Stanton AV, Uitterlinden AG, van der Harst P, van der Schouw YT, Samani NJ, Johnson AD, Munroe PB, de Bakker PI, Zhu X, Levy D, Keating BJ, Asselbergs FW (2013) Loci influencing blood pressure identified using a cardiovascular gene-centric array. Hum Mol Genet 22(8):1663–1678. https://doi.org/10.1093/hmg/dds555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Johnson JA, Zineh I, Puckett BJ, McGorray SP, Yarandi HN, Pauly DF (2003) Beta 1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin Pharmacol Ther 74(1):44–52. https://doi.org/10.1016/S0009-9236(03)00068-7

    Article  CAS  PubMed  Google Scholar 

  37. Liu J, Liu ZQ, Yu BN, Xu FH, Mo W, Zhou G, Liu YZ, Li Q, Zhou HH (2006) beta1-Adrenergic receptor polymorphisms influence the response to metoprolol monotherapy in patients with essential hypertension. Clin Pharmacol Ther 80(1):23–32. https://doi.org/10.1016/j.clpt.2006.03.004

    Article  CAS  PubMed  Google Scholar 

  38. O'Shaughnessy KM, Fu B, Dickerson C, Thurston D, Brown MJ (2000) The gain-of-function G389R variant of the beta1-adrenoceptor does not influence blood pressure or heart rate response to beta-blockade in hypertensive subjects. Clin Sci (Lond) 99(3):233–238

    Article  CAS  Google Scholar 

  39. Karlsson J, Lind L, Hallberg P, Michaelsson K, Kurland L, Kahan T, Malmqvist K, Ohman KP, Nystrom F, Melhus H (2004) Beta1-adrenergic receptor gene polymorphisms and response to beta1-adrenergic receptor blockade in patients with essential hypertension. Clin Cardiol 27(6):347–350. https://doi.org/10.1002/clc.4960270610

    Article  CAS  PubMed  Google Scholar 

  40. Aleong RG, Sauer WH, Davis G, Murphy GA, Port JD, Anand IS, Fiuzat M, O'Connor CM, Abraham WT, Liggett SB, Bristow MR (2013) Prevention of atrial fibrillation by bucindolol is dependent on the beta(1)389 Arg/Gly adrenergic receptor polymorphism. JACC Heart Fail 1(4):338–344. https://doi.org/10.1016/j.jchf.2013.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  41. Aleong RG, Sauer WH, Robertson AD, Liggett SB, Bristow MR (2013) Adrenergic receptor polymorphisms and prevention of ventricular arrhythmias with bucindolol in patients with chronic heart failure. Circ Arrhythm Electrophysiol 6(1):137–143. https://doi.org/10.1161/CIRCEP.111.969618

    Article  CAS  PubMed  Google Scholar 

  42. Liggett SB, Mialet-Perez J, Thaneemit-Chen S, Weber SA, Greene SM, Hodne D, Nelson B, Morrison J, Domanski MJ, Wagoner LE, Abraham WT, Anderson JL, Carlquist JF, Krause-Steinrauf HJ, Lazzeroni LC, Port JD, Lavori PW, Bristow MR (2006) A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc Natl Acad Sci U S A 103(30):11288–11293. https://doi.org/10.1073/pnas.0509937103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bhatnagar V, O'Connor DT, Brophy VH, Schork NJ, Richard E, Salem RM, Nievergelt CM, Bakris GL, Middleton JP, Norris KC, Wright J, Hiremath L, Contreras G, Appel LJ, Lipkowitz MS, Investigators AS (2009) G-protein-coupled receptor kinase 4 polymorphisms and blood pressure response to metoprolol among African Americans: sex-specificity and interactions. Am J Hypertens 22(3):332–338. https://doi.org/10.1038/ajh.2008.341

    Article  CAS  PubMed  Google Scholar 

  44. Vandell AG, Lobmeyer MT, Gawronski BE, Langaee TY, Gong Y, Gums JG, Beitelshees AL, Turner ST, Chapman AB, Cooper-DeHoff RM, Bailey KR, Boerwinkle E, Pepine CJ, Liggett SB, Johnson JA (2012) G protein receptor kinase 4 polymorphisms: beta-blocker pharmacogenetics and treatment-related outcomes in hypertension. Hypertension 60(4):957–964. https://doi.org/10.1161/HYPERTENSIONAHA.112.198721

    Article  CAS  PubMed  Google Scholar 

  45. Muskalla AM, Suter PM, Saur M, Nowak A, Hersberger M, Krayenbuehl PA (2014) G-protein receptor kinase 4 polymorphism and response to antihypertensive therapy. Clin Chem 60(12):1543–1548. https://doi.org/10.1373/clinchem.2014.226605

    Article  CAS  PubMed  Google Scholar 

  46. Heidari F, Vasudevan R, Mohd Ali SZ, Ismail P, Etemad A, Pishva SR, Othman F, Abu Bakar S (2015) Association of insertion/deletion polymorphism of angiotensin-converting enzyme gene among Malay male hypertensive subjects in response to ACE inhibitors. J Renin-Angiotensin-Aldosterone Syst 16(4):872–879. https://doi.org/10.1177/1470320314538878

    Article  CAS  PubMed  Google Scholar 

  47. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F (1990) An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86(4):1343–1346. https://doi.org/10.1172/JCI114844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Danser AH, Schalekamp MA, Bax WA, van den Brink AM, Saxena PR, Riegger GA, Schunkert H (1995) Angiotensin-converting enzyme in the human heart. Effect of the deletion/insertion polymorphism. Circulation 92(6):1387–1388. https://doi.org/10.1161/01.cir.92.6.1387

    Article  CAS  PubMed  Google Scholar 

  49. Lachurie ML, Azizi M, Guyene TT, Alhenc-Gelas F, Menard J (1995) Angiotensin-converting enzyme gene polymorphism has no influence on the circulating renin-angiotensin-aldosterone system or blood pressure in normotensive subjects. Circulation 91(12):2933–2942. https://doi.org/10.1161/01.cir.91.12.2933

    Article  CAS  PubMed  Google Scholar 

  50. Mahmoudpour SH, Leusink M, van der Putten L, Terreehorst I, Asselbergs FW, de Boer A, Maitland-van der Zee AH (2013) Pharmacogenetics of ACE inhibitor-induced angioedema and cough: a systematic review and meta-analysis. Pharmacogenomics 14(3):249–260. https://doi.org/10.2217/pgs.12.206

    Article  CAS  PubMed  Google Scholar 

  51. Yu H, Lin S, Zhong J, He M, Jin L, Zhang Y, Liu G (2014) A core promoter variant of angiotensinogen gene and interindividual variation in response to angiotensin-converting enzyme inhibitors. J Renin-Angiotensin-Aldosterone Syst 15(4):540–546. https://doi.org/10.1177/1470320313506481

    Article  CAS  PubMed  Google Scholar 

  52. Kurland L, Liljedahl U, Karlsson J, Kahan T, Malmqvist K, Melhus H, Syvanen AC, Lind L (2004) Angiotensinogen gene polymorphisms: relationship to blood pressure response to antihypertensive treatment. Results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs Atenolol (SILVHIA) trial. Am J Hypertens 17(1):8–13. https://doi.org/10.1016/j.amjhyper.2003.09.009

    Article  CAS  PubMed  Google Scholar 

  53. Srivastava K, Chandra S, Bhatia J, Narang R, Saluja D (2012) Association of angiotensinogen (M235T) gene polymorphism with blood pressure lowering response to angiotensin converting enzyme inhibitor (Enalapril). J Pharm Pharm Sci 15(3):399–406. https://doi.org/10.18433/j3kw3b

    Article  CAS  PubMed  Google Scholar 

  54. Mondorf UF, Russ A, Wiesemann A, Herrero M, Oremek G, Lenz T (1998) Contribution of angiotensin I converting enzyme gene polymorphism and angiotensinogen gene polymorphism to blood pressure regulation in essential hypertension. Am J Hypertens 11(2):174–183. https://doi.org/10.1016/s0895-7061(97)00402-0

    Article  CAS  PubMed  Google Scholar 

  55. Hannila-Handelberg T, Kontula KK, Paukku K, Lehtonen JY, Virtamo J, Tikkanen I, Hiltunen TP (2010) Common genetic variations of the renin-angiotensin-aldosterone system and response to acute angiotensin I-converting enzyme inhibition in essential hypertension. J Hypertens 28(4):771–779. https://doi.org/10.1097/HJH.0b013e328335c368

    Article  CAS  PubMed  Google Scholar 

  56. Liu L, Cui Y, Chung AY, Shitara Y, Sugiyama Y, Keppler D, Pang KS (2006) Vectorial transport of enalapril by Oatp1a1/Mrp2 and OATP1B1 and OATP1B3/MRP2 in rat and human livers. J Pharmacol Exp Ther 318(1):395–402. https://doi.org/10.1124/jpet.106.103390

    Article  CAS  PubMed  Google Scholar 

  57. Luo JQ, He FZ, Wang ZM, Sun NL, Wang LY, Tang GF, Liu MZ, Li Q, Chen XP, Liu ZQ, Zhou HH, Zhang W (2015) SLCO1B1 variants and angiotensin converting enzyme inhibitor (enalapril)-induced cough: a pharmacogenetic study. Sci Rep 5:17253. https://doi.org/10.1038/srep17253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fuchs S, Philippe J, Germain S, Mathieu F, Jeunemaitre X, Corvol P, Pinet F (2002) Functionality of two new polymorphisms in the human renin gene enhancer region. J Hypertens 20(12):2391–2398. https://doi.org/10.1097/00004872-200212000-00018

    Article  CAS  PubMed  Google Scholar 

  59. Konoshita T, Kato N, Fuchs S, Mizuno S, Aoyama C, Motomura M, Makino Y, Wakahara S, Inoki I, Miyamori I, Pinet F, Genomic Disease Outcome Consortium (G-DOC) Study Investigators (2009) Genetic variant of the renin-angiotensin system and diabetes influences blood pressure response to angiotensin receptor blockers. Diabetes Care 32(8):1485–1490. https://doi.org/10.2337/dc09-0348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Belmin J, Levy BI, Michel JB (1994) Changes in the renin-angiotensin-aldosterone axis in later life. Drugs Aging 5(5):391–400. https://doi.org/10.2165/00002512-199405050-00007

    Article  CAS  PubMed  Google Scholar 

  61. Kurland L, Melhus H, Karlsson J, Kahan T, Malmqvist K, Ohman P, Nystrom F, Hagg A, Lind L (2002) Aldosterone synthase (CYP11B2) -344 C/T polymorphism is related to antihypertensive response: result from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA) trial. Am J Hypertens 15(5):389–393. https://doi.org/10.1016/s0895-7061(02)02256-2

    Article  CAS  PubMed  Google Scholar 

  62. Ortlepp JR, Hanrath P, Mevissen V, Kiel G, Borggrefe M, Hoffmann R (2002) Variants of the CYP11B2 gene predict response to therapy with candesartan. Eur J Pharmacol 445(1–2):151–152. https://doi.org/10.1016/s0014-2999(02)01766-1

    Article  CAS  PubMed  Google Scholar 

  63. Hallberg P, Karlsson J, Kurland L, Lind L, Kahan T, Malmqvist K, Ohman KP, Nystrom F, Melhus H (2002) The CYP2C9 genotype predicts the blood pressure response to irbesartan: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs Atenolol (SILVHIA) trial. J Hypertens 20(10):2089–2093. https://doi.org/10.1097/00004872-200210000-00030

    Article  CAS  PubMed  Google Scholar 

  64. Bae JW, Choi CI, Lee HI, Lee YJ, Jang CG, Lee SY (2012) Effects of CYP2C9∗1/∗3 and ∗1/∗13 on the pharmacokinetics of losartan and its active metabolite E-3174. Int J Clin Pharmacol Ther 50(9):683–689. https://doi.org/10.5414/CP201467

    Article  CAS  PubMed  Google Scholar 

  65. Yang R, Luo Z, Liu Y, Sun M, Zheng L, Chen Y, Li Y, Wang H, Chen L, Wu M, Zhao H (2016) Drug interactions with angiotensin receptor blockers: role of human cytochromes P450. Curr Drug Metab 17(7):681–691. https://doi.org/10.2174/1389200217666160524143843

    Article  CAS  PubMed  Google Scholar 

  66. Ferreira JC, Mochly-Rosen D (2012) Nitroglycerin use in myocardial infarction patients. Circ J 76(1):15–21. https://doi.org/10.1253/circj.cj-11-1133

    Article  CAS  PubMed  Google Scholar 

  67. Li Y, Zhang D, Jin W, Shao C, Yan P, Xu C, Sheng H, Liu Y, Yu J, Xie Y, Zhao Y, Lu D, Nebert DW, Harrison DC, Huang W, Jin L (2006) Mitochondrial aldehyde dehydrogenase-2 (ALDH2) Glu504Lys polymorphism contributes to the variation in efficacy of sublingual nitroglycerin. J Clin Invest 116(2):506–511. https://doi.org/10.1172/JCI26564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li H, Borinskaya S, Yoshimura K, Kal'ina N, Marusin A, Stepanov VA, Qin Z, Khaliq S, Lee MY, Yang Y, Mohyuddin A, Gurwitz D, Mehdi SQ, Rogaev E, Jin L, Yankovsky NK, Kidd JR, Kidd KK (2009) Refined geographic distribution of the oriental ALDH2∗504Lys (nee 487Lys) variant. Ann Hum Genet 73(Pt 3):335–345. https://doi.org/10.1111/j.1469-1809.2009.00517.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sun L, Ferreira JC, Mochly-Rosen D (2011) ALDH2 activator inhibits increased myocardial infarction injury by nitroglycerin tolerance. Sci Transl Med 3(107):107ra111. https://doi.org/10.1126/scitranslmed.3002067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen Z, Foster MW, Zhang J, Mao L, Rockman HA, Kawamoto T, Kitagawa K, Nakayama KI, Hess DT, Stamler JS (2005) An essential role for mitochondrial aldehyde dehydrogenase in nitroglycerin bioactivation. Proc Natl Acad Sci U S A 102(34):12159–12164. https://doi.org/10.1073/pnas.0503723102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Xiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiang, X., Jin, Z. (2020). Pharmacogenomics in Cardiovascular Diseases. In: Cai, W., Liu, Z., Miao, L., Xiang, X. (eds) Pharmacogenomics in Precision Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-3895-7_2

Download citation

Publish with us

Policies and ethics