Skip to main content

Application of Pharmacogenomics in Drug Discovery and Development

  • Chapter
  • First Online:
Pharmacogenomics in Precision Medicine

Abstract

Pharmacogenomics research aims to investigate the causes at genome level for the individual variability of drug efficacy or safety. Application of pharmacogenomics is to identify the genetic polymorphisms affecting diseases to determine the likelihood of the disease and it is influencing the drug therapy in the past decades. It is commonly applied to achieve personalized care by determining the genotype of patients in the clinical drug therapy. With the rapid progress in pharmacogenomics technologies and methods, the application has been broadened to the drug efficacy and safety studies in drug discovery and development. Pharmacogenomics can contribute to the two major determinants of the success of drug discovery and development, namely, safety and efficacy, which are more predictable by the identification of the susceptibility polymorphism of possible target and thus increase the success rate of drug development by stratifying subjects and adjusting dosage regimen in clinical trials. As there are more and more drug labels with pharmacogenomics information, global regulatory agencies have laid down the guidelines on the application of pharmacogenomics in drug development and clinical therapy. The guidance further facilitates the application of pharmacogenomics in the drug discovery and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCarthy AD, Kennedy JL, Middleton LT (2005) Pharmacogenetics in drug development. Philos Trans R Soc Lond Ser B Biol Sci 360(1460):1579–1588. https://doi.org/10.1098/rstb.2005.1688

    Article  CAS  Google Scholar 

  2. Dickson M, Gagnon JP (2004) The cost of new drug discovery and development. Discov Med 4(22):172–179

    PubMed  Google Scholar 

  3. DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22(2):151–185. https://doi.org/10.1016/s0167-6296(02)00126-1

    Article  PubMed  Google Scholar 

  4. McCarthy AD, Kennedy JL, Middleton LT (2005) Pharmacogenetics in drug development. Philos Trans R Soc Lond B Biol Sci. 360(1460):1579–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Surendiran A, Pradhan SC, Adithan C (2008) Role of pharmacogenomics in drug discovery and development. Indian J Pharmacol 40(4):137–143. https://doi.org/10.4103/0253-7613.43158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Penny MA, McHale D (2005) Pharmacogenomics and the drug discovery pipeline: when should it be implemented? Am J Pharmacogenomics 5(1):53–62. https://doi.org/10.2165/00129785-200505010-00005

    Article  CAS  PubMed  Google Scholar 

  7. Schmutz J, Wheeler J, Grimwood J, Dickson M, Yang J, Caoile C, Bajorek E, Black S, Chan YM, Denys M, Escobar J, Flowers D, Fotopulos D, Garcia C, Gomez M, Gonzales E, Haydu L, Lopez F, Ramirez L, Retterer J, Rodriguez A, Rogers S, Salazar A, Tsai M, Myers RM (2004) Quality assessment of the human genome sequence. Nature 429(6990):365–368. https://doi.org/10.1038/nature02390

    Article  CAS  PubMed  Google Scholar 

  8. Bentley DR (2004) Genomes for medicine. Nature 429(6990):440–445. https://doi.org/10.1038/nature02622

    Article  CAS  PubMed  Google Scholar 

  9. Zhang H, De T, Zhong Y, Perera MA (2019) The advantages and challenges of diversity in pharmacogenomics: can minority populations bring us closer to implementation? Clin Pharmacol Ther 106(2):338–349. https://doi.org/10.1002/cpt.1491

    Article  PubMed  Google Scholar 

  10. Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, Derre A, Villeger L, Farnier M, Beucler I, Bruckert E, Chambaz J, Chanu B, Lecerf JM, Luc G, Moulin P, Weissenbach J, Prat A, Krempf M, Junien C, Seidah NG, Boileau C (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34(2):154–156. https://doi.org/10.1038/ng1161

    Article  CAS  PubMed  Google Scholar 

  11. Kent ST, Rosenson RS, Avery CL, Chen YI, Correa A, Cummings SR, Cupples LA, Cushman M, Evans DS, Gudnason V, Harris TB, Howard G, Irvin MR, Judd SE, Jukema JW, Lange L, Levitan EB, Li X, Liu Y, Post WS, Postmus I, Psaty BM, Rotter JI, Safford MM, Sitlani CM, Smith AV, Stewart JD, Trompet S, Sun F, Vasan RS, Woolley JM, Whitsel EA, Wiggins KL, Wilson JG, Muntner P (2017) PCSK9 loss-of-function variants, low-density lipoprotein cholesterol, and risk of coronary heart disease and stroke: data from 9 studies of blacks and whites. Circ Cardiovasc Genet 10(4):e001632. https://doi.org/10.1161/circgenetics.116.001632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lindpaintner K (2002) The impact of pharmacogenetics and pharmacogenomics on drug discovery. Nat Rev Drug Discov 1(6):463–469. https://doi.org/10.1038/nrd823

    Article  CAS  PubMed  Google Scholar 

  13. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106(23):9362–9367. https://doi.org/10.1073/pnas.0903103106

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lesko LJ, Woodcock J (2004) Translation of pharmacogenomics and pharmacogenetics: a regulatory perspective. Nat Rev Drug Discov 3(9):763–769. https://doi.org/10.1038/nrd1499

    Article  CAS  PubMed  Google Scholar 

  15. Roses AD (2004) Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat Rev Genet 5(9):645–656. https://doi.org/10.1038/nrg1432

    Article  CAS  PubMed  Google Scholar 

  16. Huang SM, Goodsaid F, Rahman A, Frueh F, Lesko LJ (2006) Application of pharmacogenomics in clinical pharmacology. Toxicol Mech Methods 16(2–3):89–99. https://doi.org/10.1080/15376520600558333

    Article  CAS  PubMed  Google Scholar 

  17. Nelson MR, Bacanu SA, Mosteller M, Li L, Bowman CE, Roses AD, Lai EH, Ehm MG (2009) Genome-wide approaches to identify pharmacogenetic contributions to adverse drug reactions. Pharmacogenomics J 9(1):23–33. https://doi.org/10.1038/tpj.2008.4

    Article  CAS  PubMed  Google Scholar 

  18. Liou SY, Stringer F, Hirayama M (2012) The impact of pharmacogenomics research on drug development. Drug Metab Pharmacokinet 27(1):2–8

    Article  CAS  PubMed  Google Scholar 

  19. Lesko LJ, Woodcock J (2002) Pharmacogenomic-guided drug development: regulatory perspective. Pharmacogenomics J 2(1):20–24

    Article  CAS  PubMed  Google Scholar 

  20. Food and Drug Administration (January, 2013) Clinical pharmacogenomics premarket evaluation in early phase clinical studies and recommendations for labeling.pdf. Food and Drug Administration, Silver Spring

    Google Scholar 

  21. Ishiguro A, Toyoshima S, Uyama Y (2008) Current Japanese regulatory situations of pharmacogenomics in drug administration. Expert Rev Clin Pharmacol 1(4):505–514. https://doi.org/10.1586/17512433.1.4.505

    Article  CAS  PubMed  Google Scholar 

  22. Durham LK, Webb SM, Milos PM, Clary CM, Seymour AB (2004) The serotonin transporter polymorphism, 5HTTLPR, is associated with a faster response time to sertraline in an elderly population with major depressive disorder. Psychopharmacology 174(4):525–529. https://doi.org/10.1007/s00213-003-1562-3

    Article  CAS  PubMed  Google Scholar 

  23. Cavallari U, Trabetti E, Malerba G, Biscuola M, Girelli D, Olivieri O, Martinelli N, Angiolillo DJ, Corrocher R, Pignatti PF (2007) Gene sequence variations of the platelet P2Y12 receptor are associated with coronary artery disease. BMC Med Genet 8:59. https://doi.org/10.1186/1471-2350-8-59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burgess JGJ (2002) Cracking the druggable genome. Bio-IT World, San Francisco

    Google Scholar 

  25. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1(9):727–730. https://doi.org/10.1038/nrd892

    Article  CAS  PubMed  Google Scholar 

  26. Warden BA, Fazio S, Shapiro MD (2019) The PCSK9 revolution: current status, controversies, and future directions. Trends Cardiovasc Med. https://doi.org/10.1016/j.tcm.2019.05.007

  27. Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH (2005) Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 37(2):161–165. https://doi.org/10.1038/ng1509

    Article  CAS  PubMed  Google Scholar 

  28. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354(12):1264–1272. https://doi.org/10.1056/NEJMoa054013

    Article  CAS  PubMed  Google Scholar 

  29. Yadav K, Sharma M, Ferdinand KC (2016) Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors: present perspectives and future horizons. Nutr Metab Cardiovasc Dis 26(10):853–862. https://doi.org/10.1016/j.numecd.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  30. Roth EM, McKenney JM, Hanotin C, Asset G, Stein EA (2012) Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N Engl J Med 367(20):1891–1900. https://doi.org/10.1056/NEJMoa1201832

    Article  CAS  PubMed  Google Scholar 

  31. Stein EA, Gipe D, Bergeron J, Gaudet D, Weiss R, Dufour R, Wu R, Pordy R (2012) Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. The Lancet 380(9836):29–36. https://doi.org/10.1016/S0140-6736(12)60771-5

    Article  CAS  Google Scholar 

  32. McKenney JM, Koren MJ, Kereiakes DJ, Hanotin C, Ferrand A-C, Stein EA (2012) Safety and efficacy of a monoclonal antibody to Proprotein Convertase Subtilisin/Kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol 59(25):2344–2353. https://doi.org/10.1016/j.jacc.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  33. FDA (2015). http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm460082.htm

  34. Deininger M, O’Brien SG, Guilhot F, Goldman JM, Hochhaus A, Hughes TP, Radich JP, Hatfield AK, Mone M, Filian J, Reynolds J, Gathmann I, Larson RA, Druker BJ (2009) International randomized study of interferon Vs STI571 (IRIS) 8-year follow up: sustained survival and low risk for progression or events in patients with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP) treated with Imatinib. Blood 114(22):1126–1126

    Article  Google Scholar 

  35. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, Kawano K, Hanada M, Kurata A, Takeda M, Muhammad Tunio G, Matsuzawa Y, Kanakura Y, Shinomura Y, Kitamura Y (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279(5350):577–580. https://doi.org/10.1126/science.279.5350.577

    Article  CAS  PubMed  Google Scholar 

  36. Slamon D, Clark G, Wong S, Levin W, Ullrich A, McGuire W (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182. https://doi.org/10.1126/science.3798106

    Article  CAS  PubMed  Google Scholar 

  37. Slamon D, Godolphin W, Jones L, Holt J, Wong S, Keith D, Levin W, Stuart S, Udove J, Ullrich A et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244(4905):707–712. https://doi.org/10.1126/science.2470152

    Article  CAS  PubMed  Google Scholar 

  38. Bickett DJ, MacKenzie PI, Veronese ME, Miners JO (1993) In vitro approaches can predict human drug metabolism. Trends Pharmacol Sci 14(8):292–294

    Article  CAS  PubMed  Google Scholar 

  39. Yang Y, Botton MR, Scott ER, Scott SA (2017) Sequencing the CYP2D6 gene: from variant allele discovery to clinical pharmacogenetic testing. Pharmacogenomics 18(7):673–685. https://doi.org/10.2217/pgs-2017-0033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Monica RP, Rao SG (2007) Pharmacogenomics and modern therapy. Indian J Pharm Sci 69:167–172. https://doi.org/10.4103/0250-474X.33138

    Article  Google Scholar 

  41. Shak S (1999) Overview of the trastuzumab (Herceptin) anti-HER2 monoclonal antibody clinical program in HER2-overexpressing metastatic breast cancer. Herceptin multinational investigator study group. Semin Oncol 26(4 Suppl 12):71–77

    CAS  PubMed  Google Scholar 

  42. Wilke RA, Fanciullo J (2017) Point-counterpoint: SLCO1B1 genotyping for statins. S D Med. 70(3):102–104

    PubMed  PubMed Central  Google Scholar 

  43. Warikoo N, Faraone SV (2013) Background, clinical features and treatment of attention deficit hyperactivity disorder in children. Expert Opin Pharmacother 14(14):1885–1906. https://doi.org/10.1517/14656566.2013.818977

    Article  CAS  PubMed  Google Scholar 

  44. National Institute of Mental Health (2015) Attention deficit hyperactivity disorder (ADHD) www.nimh.nih.gov/health/topics/attention-deficit-hyperactivity-disorder-adhd/index.shtml. Accessed 10 May 2015

  45. Sauer JM, Ponsler GD, Mattiuz EL, Long AJ, Witcher JW, Thomasson HR, Desante KA (2003) Disposition and metabolic fate of atomoxetine hydrochloride: the role of CYP2D6 in human disposition and metabolism. Drug Metab Dispos 31(1):98–107. https://doi.org/10.1124/dmd.31.1.98

    Article  CAS  PubMed  Google Scholar 

  46. (2011) Strattera. [package insert]. Eli Lilly and Company, Indianapolis

    Google Scholar 

  47. Stainsby CM, Perger TM, Vannappagari V, Mounzer KC, Hsu RK, Henegar CE, Oyee J, Urbaityte R, Lane CE, Carter LM, Pakes GE, Shaefer MS (2019) Abacavir hypersensitivity reaction reporting rates during a decade of HLA-B∗5701 screening as a risk-mitigation measure. Pharmacotherapy 39(1):40–54. https://doi.org/10.1002/phar.2196

    Article  CAS  PubMed  Google Scholar 

  48. Veenstra DL, Harris J, Gibson RL, Rosenfeld M, Burke W, Watts C (2007) Pharmacogenomic testing to prevent aminoglycoside-induced hearing loss in cystic fibrosis patients: potential impact on clinical, patient, and economic outcomes. Genet Med 9(10):695–704. https://doi.org/10.1097/GIM.0b013e318156dd07

    Article  CAS  PubMed  Google Scholar 

  49. Patterson SD, Cohen N, Karnoub M, Truter SL, Emison E, Khambata-Ford S, Spear B, Ibia E, Sproule R, Barnes D, Bhathena A, Bristow MR, Russell C, Wang D, Warner A, Westelinck A, Brian W, Snapir A, Franc MA, Wong P, Shaw PM (2011) Prospective–retrospective biomarker analysis for regulatory consideration: white paper from the industry pharmacogenomics working group. Pharmacogenomics 12(7):939–951. https://doi.org/10.2217/pgs.11.52

    Article  PubMed  Google Scholar 

  50. U.S. Department of Health and Human Services (3 September 2019) Table of pharmacogenomic biomarkers in drug labeling. U.S. Food and Drug Administration, Silver Spring.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Xiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiang, X., Yuan, Y. (2020). Application of Pharmacogenomics in Drug Discovery and Development. In: Cai, W., Liu, Z., Miao, L., Xiang, X. (eds) Pharmacogenomics in Precision Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-3895-7_14

Download citation

Publish with us

Policies and ethics