Skip to main content

Shuffled Linear Regression

  • Chapter
  • First Online:
Low-overhead Communications in IoT Networks
  • 417 Accesses

Abstract

In this chapter, we shall introduce a shuffled linear regression model for joint data decoding and device identification in IoT networks. It is first formulated as a maximum likelihood estimation (MLE) problem. To solve this MLE problem, two algorithms are presented: one is based on sorting, and the other algorithm returns an approximate solution to the MLE problem. Next, theoretical analysis on the shuffled linear regression based on the algebraic-geometric theory is presented. Based on the analysis, an algebraically initialized expectation-maximization algorithm is introduced to solve the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We do not distinguish between p and .

References

  1. Abid, A., Zou, J.: A stochastic expectation-maximization approach to shuffled linear regression. In: Proceedings of the 56th Annual Allerton Conference on Communication, Control, and Computing, pp. 470–477. IEEE, Piscataway (2018)

    Google Scholar 

  2. Abid, A., Poon, A., Zou, J.: Linear regression with shuffled labels (2017). Preprint. arXiv:1705.01342

    Google Scholar 

  3. Boutsidis, C., Drineas, P., Magdon-Ismail, M.: Near-optimal coresets for least-squares regression. IEEE Trans. Inf. Theory. 59(10), 6880–6892 (2013)

    Article  MathSciNet  Google Scholar 

  4. Hsu, D.J., Shi, K., Sun, X.: Linear regression without correspondence. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 1531–1540 (2017)

    Google Scholar 

  5. Lazard, D.: Thirty years of polynomial system solving, and now? J. Symb. Comput. 44(3), 222–231 (2009)

    Article  MathSciNet  Google Scholar 

  6. Lian, W., Zhang, L., Yang, M.H.: An efficient globally optimal algorithm for asymmetric point matching. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1281–1293 (2016)

    Article  Google Scholar 

  7. Marques, M., Stosić, M., Costeira, J.: Subspace matching: unique solution to point matching with geometric constraints. In: Proceedings of the International Conference on Computer Vision, pp. 1288–1294. IEEE, Piscataway (2009)

    Google Scholar 

  8. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 111–125 (2008)

    Google Scholar 

  9. Pananjady, A., Wainwright, M.J., Courtade, T.A.: Linear regression with shuffled data: statistical and computational limits of permutation recovery. IEEE Trans. Inf. Theory 64(5), 3286–3300 (2018)

    Article  MathSciNet  Google Scholar 

  10. Peng, L., Song, X., Tsakiris, M.C., Choi, H., Kneip, L., Shi, Y.: Algebraically-initialized expectation maximization for header-free communication. In: Proceedings of the IEEE International Conference on Acoustics Speech Signal Processing (ICASSP), pp. 5182–5186 (2019)

    Google Scholar 

  11. Pradhan, S.S., Kusuma, J., Ramchandran, K.: Distributed compression in a dense microsensor network. IEEE Signal Process. Manag. 19(2), 51–60 (2002)

    Article  Google Scholar 

  12. Scaglione, A., Servetto, S.: On the interdependence of routing and data compression in multi-hop sensor networks. Wirel. Netw. 11(1–2), 149–160 (2005)

    Article  Google Scholar 

  13. Slawski, M., Ben-David, E., et al.: Linear regression with sparsely permuted data. Electron. J. Stat. 13(1), 1–36 (2019)

    Article  MathSciNet  Google Scholar 

  14. Tsakiris, M.C., Peng, L.: Homomorphic sensing. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 6335–6344 (2019)

    Google Scholar 

  15. Tsakiris, M.C., Peng, L., Conca, A., Kneip, L., Shi, Y., Choi, H.: An algebraic-geometric approach to shuffled linear regression (2018). Preprint. arXiv: 1810.05440

    Google Scholar 

  16. Unnikrishnan, J., Haghighatshoar, S., Vetterli, M.: Unlabeled sensing with random linear measurements. IEEE Trans. Inf. Theory. 64(5), 3237–3253 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shi, Y., Dong, J., Zhang, J. (2020). Shuffled Linear Regression. In: Low-overhead Communications in IoT Networks. Springer, Singapore. https://doi.org/10.1007/978-981-15-3870-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3870-4_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3869-8

  • Online ISBN: 978-981-15-3870-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics