Sparse Linear Model



In this chapter, a sparse linear model for joint activity detection and channel estimation in IoT networks is introduced. We present the problem formulation for both the cases of single-antenna and multiple-antenna BSs. A convex relaxation approach based on p-norm minimization is firstly introduced, followed by a smoothed primal-dual first-order algorithm to solve it. The theoretical analysis of the convex relaxation approach based on the conic integral geometry theory is further presented. Furthermore, an iterative threshold algorithm, namely approximate message passing (AMP), is introduced, followed by the performance analysis based on the state evolution technique. Simulation results are also presented to demonstrate the performance of different algorithms.


  1. 1.
    Amelunxen, D., Lotz, M., McCoy, M.B., Tropp, J.A.: Living on the edge: phase transitions in convex programs with random data. Inf. Inference 3(3), 224–294 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bastug, E., Bennis, M., Debbah, M.: Living on the edge: the role of proactive caching in 5G wireless networks. IEEE Commun. Mag. 52(8), 82–89 (2014)CrossRefGoogle Scholar
  3. 3.
    Bayati, M., Montanari, A.: The dynamics of message passing on dense graphs, with applications to compressed sensing. IEEE Trans. Inf. Theory 57(2), 764–785 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Becker, S.R., Candès, E.J., Grant, M.C.: Templates for convex cone problems with applications to sparse signal recovery. Math. Program. Comput. 3(3), 165–218 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Borgerding, M., Schniter, P., Rangan, S.: AMP-inspired deep networks for sparse linear inverse problems. IEEE Trans. Signal Process. 65(16), 4293–4308 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)CrossRefGoogle Scholar
  7. 7.
    Bruer, J.J., Tropp, J.A., Cevher, V., Becker, S.R.: Designing statistical estimators that balance sample size, risk, and computational cost. IEEE J. Sel. Top. Sign. Proces. 9(4), 612–624 (2015)CrossRefGoogle Scholar
  8. 8.
    Candes, E., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chandrasekaran, V., Jordan, M.I.: Computational and statistical tradeoffs via convex relaxation. Proc. Natl. Acad. Sci. 110(13), E1181–E1190 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chen, X., Liu, J., Wang, Z., Yin, W.: Theoretical linear convergence of unfolded ISTA and its practical weights and thresholds. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 9061–9071 (2018)Google Scholar
  12. 12.
    Chen, Z., Sohrabi, F., Yu, W.: Sparse activity detection for massive connectivity. IEEE Trans. Signal Process. 66(7), 1890–1904 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Donoho, D.L., et al.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Donoho, D.L., Maleki, A., Montanari, A.: Message-passing algorithms for compressed sensing. Proc. Nat. Acad. Sci. 106(45), 18914–18919 (2009)CrossRefGoogle Scholar
  16. 16.
    Donoho, D.L., Maleki, A., Montanari, A.: Message passing algorithms for compressed sensing: I. motivation and construction. In: Proceedings of the IEEE Information Theory Workshop on Information Theory, pp. 1–5. IEEE, Piscataway (2010)Google Scholar
  17. 17.
    Fletcher, A.K., Pandit, P., Rangan, S., Sarkar, S., Schniter, P.: Plug-in estimation in high-dimensional linear inverse problems: a rigorous analysis. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 7440–7449 (2018)Google Scholar
  18. 18.
    Giryes, R., Eldar, Y.C., Bronstein, A.M., Sapiro, G.: Tradeoffs between convergence speed and reconstruction accuracy in inverse problems. IEEE Trans. Signal Process. 66(7), 1676–1690 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.: Fast alternating direction optimization methods. SIAM J. Imaging Sci. 7(3), 1588–1623 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ito, D., Takabe, S., Wadayama, T.: Trainable ISTA for sparse signal recovery. IEEE Trans. Signal Process. 67(12), 3113–3125 (2019)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jiang, T., Shi, Y., Zhang, J., Letaief, K.B.: Joint activity detection and channel estimation for IoT networks: phase transition and computation-estimation tradeoff. IEEE Internet Things J. 6(4), 6212–6225 (2018)CrossRefGoogle Scholar
  22. 22.
    Lai, M.J., Yin, W.: Augmented 1 and nuclear-norm models with a globally linearly convergent algorithm. SIAM J. Imaging Sci. 6(2), 1059–1091 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lan, G., Lu, Z., Monteiro, R.D.: Primal-dual first-order methods with \(\mathcal {O}(1/\epsilon )\) iteration-complexity for cone programming. Math. Program. 126(1), 1–29 (2011)Google Scholar
  24. 24.
    Liu, L., Yu, W.: Massive connectivity with massive MIMO–part I: device activity detection and channel estimation. IEEE Trans. Signal Process. 66(11), 2933–2946 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Liu, L., Yu, W.: Massive connectivity with massive MIMO—part II: achievable rate characterization. IEEE Trans. Signal Process. 66(11), 2947–2959 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Liu, L., Larsson, E.G., Yu, W., Popovski, P., Stefanovic, C., De Carvalho, E.: Sparse signal processing for grant-free massive connectivity: a future paradigm for random access protocols in the Internet of Things. IEEE Signal Process. Mag. 35(5), 88–99 (2018)CrossRefGoogle Scholar
  27. 27.
    Muthukrishnan, S., et al.: Data streams: algorithms and applications. Found. Trends Theor. Comput. Sci. 1(2), 117–236 (2005)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Oymak, S., Hassibi, B.: Sharp MSE bounds for proximal denoising. Found. Comput. Math. 16(4), 965–1029 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Oymak, S., Recht, B., Soltanolkotabi, M.: Sharp time–data tradeoffs for linear inverse problems. IEEE Trans. Inf. Theory 64(6), 4129–4158 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)CrossRefGoogle Scholar
  31. 31.
    Schepker, H.F., Bockelmann, C., Dekorsy, A.: Exploiting sparsity in channel and data estimation for sporadic multi-user communication. In: Proceedings of the International Symposium on Wireless Communication Systems, pp. 1–5. VDE, Frankfurt (2013)Google Scholar
  32. 32.
    Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin (2008)CrossRefGoogle Scholar
  33. 33.
    Shi, Y., Zhang, J., Letaief, K.B., Bai, B., Chen, W.: Large-scale convex optimization for ultra-dense Cloud-RAN. IEEE Trans. Wirel. Commun. 22(3), 84–91 (2015)CrossRefGoogle Scholar
  34. 34.
    Wunder, G., Boche, H., Strohmer, T., Jung, P.: Sparse signal processing concepts for efficient 5G system design. IEEE Access 3, 195–208 (2015)CrossRefGoogle Scholar
  35. 35.
    Wunder, G., Jung, P., Wang, C.: Compressive random access for post-LTE systems. In: Proceedings of the IEEE International Conference on Communications Workshops (ICC) Workshops, pp. 539–544. IEEE, Piscataway (2014)Google Scholar
  36. 36.
    Xu, X., Rao, X., Lau, V.K.: Active user detection and channel estimation in uplink CRAN systems. In: Proceedings of the International Conference on Communications (ICC), pp. 2727–2732. IEEE, Piscataway (2015)Google Scholar
  37. 37.
    Zhang, J., Ghanem, B.: ISTA-net: Interpretable optimization-inspired deep network for image compressive sensing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1828–1837 (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Information Science and TechnologyShanghai Tech UniversityShanghaiChina
  2. 2.School of Information Science and TechnologyShanghaiTech UniversityShanghaiChina
  3. 3.Department of Electronic & Information EngineeringHong Kong Polytechnic UniversityKowloonHong Kong

Personalised recommendations